Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:58:21.420Z Has data issue: false hasContentIssue false

Selective Growth of Semiconducting Single-Walled Carbon Nanotubes by “In Situ” Methods

Published online by Cambridge University Press:  23 January 2017

Chengzhi Luo
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
Chunxu Pan*
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
*
*(Email: cxpan@whu.edu.cn)
Get access

Abstract

Single-walled carbon nanotubes (SWNTs) possess superior electronic properties that make them ideal candidates for making next-generation electronic circuits. However, the commercially available SWNTs that obtained directly from the viable synthesis procedures are the mixtures of semiconducting (s-) and metallic (m-) SWNTs. That shortcoming of present technologies hinders further studies and limits the scalable applications for a series of promising SWNT-based electronics. Separation of the two species is the way to solve the present dilemma. Herein, this review highlights “in situ” approaches towards selective growth of s-SWNT. The methods and techniques used for the enrichment of s-SWNTs are reviewed. Based on the understanding of the growth mechanism of those strategies, we try to propose the general guideline on that how can we develop the optimal method for the growth of s-SWNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J., Reid, O. G., Blackburn, J. L. and Rumbles, G., Nat. Commun. 6, 8809 (2015).CrossRefGoogle Scholar
Matsumoto, N., Oshima, A., Yumura, M., Futaba, D. N. and Hata, K., Nanoscale 7, 8707 (2015).Google Scholar
Seabron, E., MacLaren, S., Xie, X., Rotkin, S. V., Rogers, J. A. and Wilson, W. L., ACS Nano 10, 360 (2016).Google Scholar
Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K. and Dai, H., Science 287, 622 (2000).CrossRefGoogle Scholar
Kumar, A. and Zhou, C., ACS Nano 4, 11 (2010).Google Scholar
Krupke, R., Hennrich, F., Lo¨hneysen, H. v. and Kappes, M. M., Science 301, 344 (2003).Google Scholar
Hong, G., Zhou, M., Zhang, R., Hou, S., Choi, W., Woo, Y. S., Choi, J. Y., Liu, Z. and Zhang, J., Angew. Chem. Int.Ed. 50, 6819 (2011).Google Scholar
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. and Hersam, M. C., Nat. Nanotechnol, 1, 60 (2006).CrossRefGoogle Scholar
LeMieux, M. C., Roberts, M., Barman, S., Jin, Y. W., Kim, J. M. and Bao, Z., Science 321, 101 (2008).Google Scholar
Hong, G., Zhang, B., Peng, B., Zhang, J., Choi, W. M., Choi, J.-Y., Kim, J. M. and Liu, Z., J. Am. Chem. Soc. 131, 14642 (2009).CrossRefGoogle Scholar
Zhang, Y., Zhang, Y., Xian, X., Zhang, J., and Liu, Z., J. Phys. Chem. C 112, 3849 (2008).Google Scholar
Huang, H., Maruyama, R., Noda, K., Kajiura, H. and Kadono, K., J. Phys. Chem. B 110, 7316 (2006).Google Scholar
Shim, H. C., Song, J.-W., Kwak, Y. K., Kim, S. and Han, C.-S., Nanotechnology 20, 065707 (2009).Google Scholar
Zhou, W., Zhan, S., Ding, L. and Liu, J., J. Am. Chem. Soc. 134, 14019 (2012).CrossRefGoogle Scholar
Yu, B., Liu, C., Hou, P., Tian, Y., Li, S., Liu, B., Li, F., Kauppinen, E. I. and Cheng, H.-M., J. Am. Chem. Soc. 133, 5232 (2011).CrossRefGoogle Scholar
Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J. F., Nishi, Y. and Dai, H., Nano Lett 4, 317 (2004).CrossRefGoogle Scholar
Qu, L., Du, F. and Dai, L., Nano Lett 8, 2682 (2008).CrossRefGoogle Scholar
Luo, C., Fu, Q. and Pan, C., Sci. Rep. 5, 9062 (2015).Google Scholar
Luo, C., Li, F., Li, D., Fu, Q. and Pan, C., ACS Appl. Mater. Interfaces 8, 31256 (2016).Google Scholar
Shaver, J., Parra-Vasquez, A. N. G., Hansel, S., Portugall, O., Mielke, C. H., Ortenberg, M. v., Hauge, R. H., Pasquali, M. and Kono, J., ACS Nano 3, 131 (2009).Google Scholar
Pamme, N., Lab Chip 6, 24 (2006).CrossRefGoogle Scholar
Luo, C., Wan, D., Jia, J., Li, D., Pan, C. and Liao, L., Nanoscale 8, 13017 (2016).Google Scholar