Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:47:11.596Z Has data issue: false hasContentIssue false

Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

Published online by Cambridge University Press:  28 June 2016

Leonard S. Fifield*
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
Yongsoon Shin
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
Wei Liu
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
David W. Gotthold
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.
Get access

Abstract

Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, J., Cote, L. J. and Huang, J., “Two Dimensional Soft Material: New Faces of Graphene Oxide,” Acc. Chem. Res. 45(8) 1356 (2012).CrossRefGoogle Scholar
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. and Geim, A. K., “Unimpeded permeation of water through helium-leak-tight graphene-based membrane,” Science 335 442 (2012).CrossRefGoogle Scholar
Joshi, R. K., Carbone, P., Wang, F. C., Kravets, V. G., Su, Y., Grigorieval, I. V., Wu, H. A., Geim, A. K. and Nair, R. R.,”Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes,” Science 343(6172) 752 (2014).Google Scholar
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, Wei and Tour, J. M., “Improved synthesis of graphene oxide,” ACS Nano 4 4806 (2010).Google Scholar
Liu, W., Zhang, J., Canfield, N. and Saraf, L., “Preparation of robust, thin zeolite membrane sheet for molecular separation,” Ind. Eng. Chem. Res. 50 11677 (2011).CrossRefGoogle Scholar
Sijbesma, H., Nymeijer, K., van Marwijk, R., Heijboer, R., Potreck, J. and Wessling, M., “Flue gas dehydration using polymer membranes,” J. Membr. Sci. 313 263 (2008).Google Scholar
An, D., Yang, L., Wang, T.-J., and Liu, B., “Separation performance of graphene oxide membrane in aqueous solution,” Ind. Eng. Chem. Res. 55(17) 48034810 (2016).CrossRefGoogle Scholar
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., and Ruoff, R. S., “Preparation and characterization of graphene oxide paper,” Nature, 448(7152) 457460 (2007).Google Scholar
Su, Y., Wei, H., Gao, R., Yang, Z., Zhang, J., Zhong, Z., and Zhang, Y., “Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper,” Carbon, 50(8) 28042809 (2012).CrossRefGoogle Scholar
Potreck, J., Nijmeijer, K., Kosinski, T., and Wessling, M., “Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074,” J. Membrane Sci., 338(12) 1116 (2009).CrossRefGoogle Scholar
Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y. J., Berger, C., de Heer, W., Bongiorno, A. and Riedo, Elisa, “Room-temperature metastability of multilayer graphene oxide films,” Nature Mat. 11 544 (2012).Google Scholar