Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:04:25.687Z Has data issue: false hasContentIssue false

Role of Pb2+ Adsorbents on the Opto-Electronic Properties of a CsPbBr3 Nanocrystal: A DFT Study

Published online by Cambridge University Press:  13 June 2019

Aaron Forde*
Affiliation:
Department of Materials Science and Nanotechnology, North Dakota State University, Fargo, North Dakota58102, United States
Erik Hobbie
Affiliation:
Department of Materials Science and Nanotechnology, North Dakota State University, Fargo, North Dakota58102, United States
Dmitri Kilin
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58102, United States
Get access

Abstract

Fully inorganic lead halide perovskite nanocrystals (NCs) are of interest for photovoltaic and light emitting devices due to optoelectronic properties. Understanding the surface chemistry of these materials is of importance as surface defects can introduce trap-states which reduce their functionality. Here we use Density Functional Theory (DFT) to model surface defects introduced by Pb2+ on a CsPbBr3 NC atomistic model. Two types of defects are studied: (i) an under-coordinated Pb2+ surface atom and (ii) Pb2+ atomic or molecular adsorbents to the NC surface. From the DFT calculations we compute the density of states (DOS) and absorption spectra of the defect models to the pristine fully-passivated NC model. We observe that for the low surface defect regime explored here that neither (i) or (ii) produce trap-states inside of the bandgap and exhibit bright optical absorption for the lowest energy transition. From the models studied, it was found that the Pb2+ atomic absorbent provides broadening of the conduction band edge, which implies chemisorption of Pb2+ to the NC surface. At higher defect densities it would be expected that Pb2+ atomic absorbents would introduce trap-states and degrade the opto-electronic properties of these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A. and Kovalenko, M.V.: Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett 15, 3692 (2015).CrossRefGoogle Scholar
Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
Almeida, G., Goldoni, L., Akkerman, Q., Dang, Z., Khan, A.H., Marras, S., Moreels, I. and Manna, L.: Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals. ACS Nano 12, 1704 (2018).CrossRefGoogle ScholarPubMed
De Roo, J., Ibanez, M., Geiregat, P., Nedelcu, G., Walravens, W., Maes, J., Martins, J.C., Van Driessche, I., Kovalenko, M.V. and Hens, Z.: Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 10, 2071 (2016).CrossRefGoogle ScholarPubMed
Krieg, F., Ochsenbein, S.T., Yakunin, S., ten Brinck, S., Aellen, P., Süess, A., Clerc, B., Guggisberg, D., Nazarenko, O., Shynkarenko, Y., Kumar, S., Shih, C.-J., Infante, I. and Kovalenko, M.V.: Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 3, 641 (2018).CrossRefGoogle ScholarPubMed
Nenon, D.P., Pressler, K., Kang, J., Koscher, B.A., Olshansky, J.H., Osowiecki, W.T., Koc, M.A., Wang, L.-W. and Alivisatos, A.P.: Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 140, 17760 (2018).CrossRefGoogle ScholarPubMed
Bodnarchuk, M.I., Boehme, S.C., ten Brinck, S., Bernasconi, C., Shynkarenko, Y., Krieg, F., Widmer, R., Aeschlimann, B., Günther, D., Kovalenko, M.V. and Infante, I.: Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Lett. 4, 63 (2019).CrossRefGoogle ScholarPubMed
Koscher, B.A., Swabeck, J.K., Bronstein, N.D. and Alivisatos, A.P.: Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. J. Am. Chem. Soc. 139, 6566 (2017).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K. and Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J.: Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Forde, A., Inerbaev, T. and Kilin, D.: Role of Cation-Anion Organic Ligands for Optical Properties of Fully Inorganic Perovskite Quantum Dots. MRS Adv. 3, 3255 (2018).CrossRefGoogle Scholar
Forde, A., Inerbaev, T., Hobbie, E.K. and Kilin, D.S.: Excited-State Dynamics of a CsPbBr3 Nanocrystal Terminated with Binary Ligands: Sparse Density of States with Giant Spin–Orbit Coupling Suppresses Carrier Cooling. J. Am. Chem. Soc. 141, 4388 (2019).CrossRefGoogle ScholarPubMed
Nayakasinghe, M.T., Han, Y., Sivapragasam, N., Kilin, D.S. and Burghaus, U.: Unexpected high binding energy of CO2 on CH3NH3PbI3 lead-halide organic–inorganic perovskites via bicarbonate formation. Chem. Comm. 54, 9949 (2018).CrossRefGoogle ScholarPubMed
Vogel, D.J., Kryjevski, A., Inerbaev D.S, T.M., Kilin and Photoinduced Single- and Multiple- Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dot J. Phys. Chem. Lett. 8, 3032 (2017).CrossRefGoogle Scholar
Forde, A., Inerbaev, T. and Kilin, D.: Spinor Dynamics in Pristine and Mn2+-Doped CsPbBr3 NC: Role of Spin–Orbit Coupling in Ground- and Excited-State Dynamics. J. Phys. Chem. C 122, 26196 (2018).CrossRefGoogle Scholar
Even, J., Pedesseau, L., Jancu, J.-M. and Katan, C.: Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J.Phys. Chem. Lett. 4, 2999 (2013).CrossRefGoogle Scholar
Kang, J. and Wang, L.-W.: High Defect Tolerance in Lead Halide Perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489 (2017).CrossRefGoogle ScholarPubMed
Meggiolaro, D. and De Angelis, F.: First-Principles Modeling of Defects in Lead Halide Perovskites: Best Practices and Open Issues. ACS Energy Letters 3, 2206 (2018).CrossRefGoogle Scholar
Lin, Y.A., A. V.: Dependence of Nonadiabatic Couplings with Kohn-Sham Orbitals on the Choice of Density Functional: Pure vs Hybrid. J Phys Chem A 120, 9028 (2016).CrossRefGoogle Scholar
Supplementary material: File

Forde et al. supplementary material

Forde et al. supplementary material 1

Download Forde et al. supplementary material(File)
File 252.8 KB