Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:33:44.289Z Has data issue: false hasContentIssue false

Realizing high aspect ratio silver micro and nanostructures by microcontact printing of alkyl thiol self-assembled monolayers

Published online by Cambridge University Press:  17 May 2019

Amare Benor*
Affiliation:
Department of Physics, Bahir Dar University, Bahir Dar, Ethiopia Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia
Asman Tamang
Affiliation:
Jacobs University Bremen, Bremen, Germany
Veit Wagner
Affiliation:
Jacobs University Bremen, Bremen, Germany
Alberto Salleo
Affiliation:
Geballe Laboratory for Advanced Materials, Department of Materials Science and Engineering, Stanford University, Stanford, USA
Dietmar Knipp*
Affiliation:
Jacobs University Bremen, Bremen, Germany Geballe Laboratory for Advanced Materials, Department of Materials Science and Engineering, Stanford University, Stanford, USA
*
*Corresponding authors:dknipp@stanford.edu and amarebenor@gmail.com
*Corresponding authors:dknipp@stanford.edu and amarebenor@gmail.com
Get access

Abstract

The patterning of gold and silver micro and nanostructures on rigid and flexible substrates is investigated by microcontact printed thiol based self-assembled monolayers. The aspect ratio of the noble metal micro and nanostructures is determined by interaction of the -SH head group of the CH3(CH2)19SH molecules and the surface of the noble metal. Silver micro and nanostructures with >10 times higher aspect ratios can be realized in comparison to commonly realized gold micro and nanostructures. The printing process is described, and the etching process is characterized in terms of etching window and etching selectivity. Potential electronic and photonic applications of the micro and nanostructures are discussed taking the boundary conditions of the printing process and the selected material system into consideration.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schmaltz, T., Sforazzini, G., Reichert, T., and Frauenrath, H., Self-assembled monolayers as patterning tool for organic electronic devices, Adv. Mater., 2017, 29, 1605286.10.1002/adma.201605286CrossRefGoogle ScholarPubMed
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev.,2005, 105, 1103.10.1021/cr0300789CrossRefGoogle ScholarPubMed
Bhushan, B. (Ed.), Springer Handbook of Nanotechnology, 3rd edition, Springer, Berlin, 2010.10.1007/978-3-642-02525-9CrossRefGoogle Scholar
Kulshrestha, A. S., Mahapatro, A., Henderson, L. A.(Eds.), Biomaterials, 1054, 65 (2010).Google Scholar
Xia, Y., Kim, E., and Whitesides, G. M., Microcontact printing of alkanethiols on silver and its application in microfabrication, J. Electrochem. Soc., 143, 1070 (1996).10.1149/1.1836585CrossRefGoogle Scholar
Qin, D., Xia, Y., and Whitesides, G. M., Soft lithography for micro- and nanoscale patterning, Nature Protocols, 5, 491(2010).10.1038/nprot.2009.234CrossRefGoogle ScholarPubMed
Wu, H., Wu, L., Zhou, X., Liu, B., and Zheng, B., Patterning hydrophobic surfaces by negative microcontact printing and its applications, Small, 14, 1802128 (2018).10.1002/smll.201802128CrossRefGoogle ScholarPubMed
Itoh, M., Nishihara, K., and Aramaki, K., Preparation and evaluation of two‐dimensional polymer films by chemical modification of an alkanethiol self‐assembled monolayer for protection of copper against corrosion, J. Electrochem. Soc., 142, 3696 (1995).10.1149/1.2048401CrossRefGoogle Scholar
Wang, P., Liang, C., Wu, B., Huang, N., Li, J., Protection of copper corrosion by modification of dodecanethiol self-assembled monolayers prepared in aqueous micellar solution, ElectrochimicaActa, 55, 878 (2010).10.1016/j.electacta.2009.06.078CrossRefGoogle Scholar
Lee, T. R., Laibinis, P. E., Folkers, J. P., and Whitesides, G. M., Heterogeneous catalysis on platinum and self-assembled monolayers on metal and metal oxide surfaces,Pure Appl. Chem., 63, 821 (1991).10.1351/pac199163060821CrossRefGoogle Scholar
Benor, A., Wagner, V., and Knipp, D., Microstructuring by microcontact printing and selective surface dewetting, J. Vac. Sci. Technol. B, 25, 1321 (2007).10.1116/1.2756552CrossRefGoogle Scholar
Khan, S. ; Lorenzelli, L. ; Dahiya, R. S., Technologies for printing sensors and electronics over large flexible substrates: A review, IEEE Sensors Journal, 15, 3164 (2015).10.1109/JSEN.2014.2375203CrossRefGoogle Scholar
Benor, A., and Knipp, D., Contact effects in organic thin film transistors with printed electrodes,Org. Electron., 9, 2009 (2008).10.1016/j.orgel.2007.10.012CrossRefGoogle Scholar
Kitamura, M., Kuzumoto, Y., Kang, W., Aomori, S., and Arakawa, Y., High conductance bottom-contact pentacene thin-film transistors with gold-nickel adhesion layers, Appl. Phys. Lett.97, 033306 (2010).10.1063/1.3465735CrossRefGoogle Scholar
Klauk, H., Will We See Gigahertz Organic Transistors?, Adv. Elect. Mat., 1700474 (2018).10.1002/aelm.201700474CrossRefGoogle Scholar
Schroder, D. K., Semiconductor material and device characterization, Wiley-IEEE Press, New York, 2006.Google Scholar
Sedra, A. S. and Smith, K. C.,Microelectronics Circuits, Oxford University Press, New York, 1998.Google Scholar
Casalini, S., Bortolotti, C. A., Leonardic, F., and Biscarini, F., Self-assembled monolayers in organic electronics, Chem. Soc. Rev., 46, 40 (2017).10.1039/C6CS00509HCrossRefGoogle ScholarPubMed
DiBenedetto, S. A., Facchetti, A., Ratner, M. A., and Marks, T. J., Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications, Adv. Mater., 21, 1407 (2009).10.1002/adma.200803267CrossRefGoogle Scholar
Ante, F., Kälblein, D., Zaki, T., Zschieschang, U., Takimiya, K., Ikeda, M., Sekitani, T., Someya, T., Burghartz, J. N., Kern, K., and Klauk, H., Contact resistance and megahertz operation ofaggressively scaled organic transistors, Small, 8, 73 (2012).10.1002/smll.201101677CrossRefGoogle ScholarPubMed
Benor, A., Hoppe, A., Wagner, V., and Knipp, D., Electrical stability of pentacene thin film transistors, Org. Electron., 8, 749 (2007).10.1016/j.orgel.2007.06.005CrossRefGoogle Scholar
Benor, A., Gburek, B., Wagner, V., and Knipp, D., Organic transistors realized by an environmental friendly microcontactprinting approach, Org. Electron., 11, 831 (2010).CrossRefGoogle Scholar
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., Atwater, H. A., and Polman, A., Light trapping in ultrathin plasmonic solar cells,Optics Express, 18, 237 (2010).CrossRefGoogle ScholarPubMed
Tamang, A., Hongsingthong, A., Sichanugrist, P., Jovanov, V., Konagai, M., Knipp, D., Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates, IEEE J. Photovoltaics, 99, 1 (2014).Google Scholar
Hoppe, A., Knipp, D., Gburek, B., Benor, A., Marinkovic, M., Wagner, V., Scaling limits of organic thin film transistors, Org. Electron., 11, 626 (2010).10.1016/j.orgel.2010.01.002CrossRefGoogle Scholar
Jovanov, V., Stiebig, H., Knipp, D., Tunable multispectral color sensor with plasmonic reflector, ACS Photonics, 5, 378 (2017).CrossRefGoogle Scholar
Tan, S. J., Zhang, L., Zhu, D., Goh, X. M., Wang, Y. M., Kumar, K., Qiu, C. –W., and Yang, J. K. W., Plasmonic color palettes for photorealistic printing with aluminum nanostructures, Nano Lett ., 14, 4023 (2014).CrossRefGoogle ScholarPubMed
Hendrickson, J., Guo, J., Zhang, B., Buchwald, W., and Soref, R., Wideband perfect light absorber at midwave infrared using multiplexed metal structures, Optics Letters, 37, 371 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Benor et al. supplementary material

Benor et al. supplementary material 1

Download Benor et al. supplementary material(File)
File 53.3 KB