Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T13:37:46.787Z Has data issue: false hasContentIssue false

Racah Materials: Role of Atomic Multiplets and Intermediate Valence in f-Electron Systems

Published online by Cambridge University Press:  16 May 2016

A. I. Lichtenstein*
Affiliation:
University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
J. Kolorenc
Affiliation:
Institute of Physics, Czech Academy of Sciences, Slovance 2, 18221 Prague, Czech Republic
A. B. Shick
Affiliation:
Institute of Physics, Czech Academy of Sciences, Slovance 2, 18221 Prague, Czech Republic
M. I. Katsnelson
Affiliation:
Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Get access

Abstract

The electronic structure of PuB6, an actinide analog of SmB6 , was investigated making use of a combination of the density functional theory (DFT), and the exact diagonalization (ED) of an effective discrete Anderson impurity model. Intermediate valence ground state with the f-shell occupation n4f =5.5 for the Pu atom in PuB6 is calculated. The 5f-shell magnetic moment is completely compensated by the moment carried by the electrons in the conduction band. Already in DFT, PuB6 is an insulator with a small amount of holes near the X-point, and the indirect band gap of ≈60 meV. This band gap becomes direct in DFT+ED calculations supporting the idea of “topological Kondo insulator” in PuB6. Connection between the electronic structure of PuB6 and δ-Pu is established. We propose that these materials belong to a new class of intermediate valence “Racah” materials with the multi-orbital “Kondo-like” singlet ground-state.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Johansson, B., Phys. Rev. B 11, 2740 (1975).CrossRefGoogle Scholar
Katsnelson, M. I., Solovyev, I. V., and Trefilov, A. V., JETP Letters 56, 276 (1992).Google Scholar
Lichtenstein, A. I. and Katsnelson, M. I., Phys. Rev. B 57, 6884 (1998).CrossRefGoogle Scholar
Hanzawa, K., J. Phys. Soc. Jpn. 67, 3151 (1998).CrossRefGoogle Scholar
Shim, J. H., Haule, K., and Kotliar, G., Nature 448, 503 (2007).Google Scholar
Shick, A. B. et al., Phys. Rev. B 87, 020505(R) (2013).CrossRefGoogle Scholar
Shick, A. B., Havela, L., Lichtenstein, A. I., Katsnelson, M. I., Sci. Rep. 5, 15429 (2015).CrossRefGoogle Scholar
Shick, A. B., Lichtenstein, A. I., and Pickett, W. E., Phys. Rev. B 60, 10763 (1999).CrossRefGoogle Scholar
Chazalviel, J. N. et al. , Phys. Rev. B 14, 4586 (1976).CrossRefGoogle Scholar
Roebler, S. et al. , PNAS 111, 4798 (2012).Google Scholar
Wachter, P., in: Handbook on the Physics and Chemistry of the Rare Earths, vol. 19 (Elsevier, Amsterdam, 1994).Google Scholar
Denlinger, J. D. et al. , arXiv:1312.6636 (unpublished).Google Scholar
Havela, L., Gouder, T., Wastin, F. and Rebizant, J., Phys. Rev. B 65, 235118 (2002).CrossRefGoogle Scholar
Racah, G., Phys. Rev. 76, 1352 (1949).CrossRefGoogle Scholar
Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., and Luitz, J., wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria, 2001).Google Scholar
Kuneš, J., Arita, R., Wissgott, P., Toschi, A., Ikeda, H., and Held, K., Comput. Phys. Commun. 181, 1888 (2010).CrossRefGoogle Scholar
Mostofi, A. A. et al., Comput. Phys. Commun. 178, 685 (2008).CrossRefGoogle Scholar
Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M., Rev. Mod. Phys. 81, 235 (1996).Google Scholar
Kolorenč, J., Shick, A. B., and Lichtenstein, A. I., Phys. Rev. B 92, 085125 (2015).CrossRefGoogle Scholar
Yee, C., Kotliar, G., Haule, K., Phys. Rev. B 81, 035105 (2010).CrossRefGoogle Scholar