Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T18:39:25.806Z Has data issue: false hasContentIssue false

Quantitative Disorder Analysis and Particle Removal Efficiency of Polypropylene-Based Masks

Published online by Cambridge University Press:  21 September 2020

R.A. Makin
Affiliation:
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI49008USA
K.R. York
Affiliation:
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI49008USA
A.S. Messecar
Affiliation:
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI49008USA
S.M. Durbin*
Affiliation:
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, MI49008USA
*
*Corresponding author:durbin@ieee.org

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We demonstrate a methodology for predicting particle removal efficiency of polypropylene-based filters used in personal protective equipment, based on quantification of disorder in the context of methyl group orientation as structural motifs in conjunction with an Ising model. The corresponding Bragg-Williams order parameter is extracted through either Raman spectro-scopy or scanning electron microscopy. Temperature-dependent analysis verifies the presence of an order-disorder transition, and the methodology is applied to published data for multiple samples. The result is a method for predicting the particle removal efficiency of filters used in masks based on a material-level property.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

References

Bragg, W. L. and Williams, E. J., Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 145, 699 (1934).Google Scholar
Bragg, W. L. and Williams, E. J., Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 151, 540 (1935).Google Scholar
Williams, E. J. and Bragg, W. L., Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 152, 231 (1935).Google Scholar
Warren, B. E., X-Ray Diffraction (Dover Publications, 2012).Google Scholar
Makin, R. A., York, K., Durbin, S. M., Senabulya, N., Mathis, J., Clarke, R., Feldberg, N., Miska, P., Jones, C. M., Deng, Z., Williams, L., Kioupakis, E., and Reeves, R. J., Phys. Rev. Lett. 122, 256403 (2019).CrossRefGoogle Scholar
Makin, R. A. and Durbin, S. M., bioRxiv:10.1101/2020.06.08.139907 (2020).Google Scholar
Makin, R.A., York, K.R., Durbin, S.M. and Reeves, R.J., Phys. Rev. B 102, 115202 (2020)Google Scholar
Loveluck, J. and Sokoloff, J., J. Phys. Chem. Solids 34, 869 (1973).Google Scholar
Hiejima, Y., Takeda, K., and Nitta, K., Macromolecules 50, 5867 (2017).CrossRefGoogle Scholar
Lee, S., Cho, A. R., Park, D., Kim, J. K., Han, K. S., Yoon, I.-J., Lee, M. H., and Nah, J., ACS Applied Materials & Interfaces 11, 2750 (2019).CrossRefGoogle Scholar
Data and analysis related to measuring the S 2 for all samples used in this manuscript are available on an online data repository. DOI: 10.5281/zenodo.3904578Google Scholar
In Principles of Equilibrium Statistical Mechanics (John Wiley & Sons, Ltd, 2005), pp. 432469.Google Scholar
Hikosaka, M. and Seto, T., Polymer Journal 5, 111 (1973).CrossRefGoogle Scholar
Auriemma, F., Ruiz de Ballesteros, O., De Rosa, C., and Corradini, P., Macromolecules 33, 8764 (2000).CrossRefGoogle Scholar
De Rosa, C., Scoti, M., Di Girolamo, R., de Ballesteros, O. R., Auriemma, F., and Malafronte, A., Polymer Crystallization 3, e10101 (2020).CrossRefGoogle Scholar
Lany, S., Fioretti, A. N., Zawadzki, P. P., Schelhas, L. T., Toberer, E. S., Zakutayev, A., and Tamboli, A. C., Phys. Rev. Materials 1, 035401 (2017).Google Scholar
Li, H., Wu, W., Bubakir, M. M., Chen, H., Zhong, X., Liu, Z., Ding, Y., and Yang, W., J. Appl. Polymer Science 131, (2014).Google Scholar
Allegra, G., Corradini, P. and Ganis, P., Macromolecular Chemistry and Physics 90, 60 (1966).CrossRefGoogle Scholar
Birshtein, T.M. and Luisi, P.M., Vysokomol. Soedin. 6, 1238 (1964).Google Scholar
Ho, R.-M., Chiang, Y.-W., Lin, S.-C., and Chen, C.-K., Progress in Polymer Science 36, 376 (2011).Google Scholar
Ishidate, R., Markvoort, A. J., Maeda, K., and Yashima, E., J. Am. Chem. Soc. 141, 7605 (2019).CrossRefGoogle Scholar
Laks, D. B., Wei, S.-H., and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).CrossRefGoogle Scholar
Wei, S., Laks, D. B., and Zunger, A., Applied Physics Letters 62, 1937 (1993).CrossRefGoogle Scholar
Liu, J., Zhang, X., Zhang, H., Zheng, L., Huang, C., Wu, H., Wang, R., and Jin, X., RSC Advances 7, 43879 (2017).CrossRefGoogle Scholar
Agranovski, I. E., Huang, R., Pyankov, O. V., Altman, I. S., and Grinshpun, S. A., Aerosol Science and Technology 40, 963 (2006).CrossRefGoogle Scholar