Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:58:29.214Z Has data issue: false hasContentIssue false

Preparation of Metal Nanoparticle Decorated Graphene Hybrid Composites: A Review

Published online by Cambridge University Press:  11 January 2018

Zhongchi Wang
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Yunjie Ping
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Qiang Fu
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China Center for Electron Microscopy, Wuhan University, Wuhan, 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China Center for Electron Microscopy, Wuhan University, Wuhan, 430072, China
*
Get access

Abstract:

In recent years, the graphene/metal nanoparticles (NPs) hybrids have sparked burgeoning interest in varied application fields due to its unique physicochemical properties. In this paper, we present an overview of preparation methods of the graphene/metal NPs hybrids, which includes some common routes as well as other particular strategies. In addition, we introduce a novel physical route to decorate metal NPs upon graphene sheets. Our expectation is that this review will provide references for the exploitation of emerging preparation technologies, and expand application fields for graphene/metal NPs hybrids in the future.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sarina, S., Zhu, H., Jaatinen, E., et al. ., J. Am. Chem. Soc., 135, 57935801(2013).CrossRefGoogle Scholar
Pal, S., Tak, Y. K., Song, J. M., Appl. Environ. Microbiol., 73, 17121720(2007).CrossRefGoogle Scholar
Chao, X., Wang, X., Zhu, J. W., J. Phys. Chem. C, 112, 1984119845(2008).Google Scholar
Guo, S., Wen, D., Zhai, Y., Acs Nano, 4, 39593968(2010).Google Scholar
Zhang, N., Zhang, Y., Xu, Y. J., Nanoscale, 4, 5792–813(2012).CrossRefGoogle ScholarPubMed
Qiu, J. D., Wang, G. C., Liang, R. P., J. Phys. Chem. C, 15, 1563915645(2011) .Google Scholar
Hong, W., Bai, H., Xu, Y., J. Phys. Chem. C, 114, 18221826(2010).Google Scholar
Xu, Z., Gao, H., Hu, G., Carbon, 49, 47314738(2011).Google Scholar
Park, M., Kim, B.H., Kim, S., Carbon, 49, 811818(2011).CrossRefGoogle Scholar
Mondal, P., Sinha, A., Salam, N., RSC Adv., 3, 56155623(2013).Google Scholar
Zhang, Q., Qin, Z., Luo, Q., Sci. Rep., 7, 1338 (2017).CrossRefGoogle Scholar
Pavithra, C. L. P., Sarada, B. V., Rajulapati, K. V., Sci. Rep., 4, 4049 (2014)CrossRefGoogle Scholar
Hwang, J., Yoon, T., Jin, S. H., et al. , Adv. Mater., 25, 67246729(2013).CrossRefGoogle Scholar
Liu, C., Wang, K., and Luo, S., Small, 7, 12031206(2011).Google Scholar
Nossol, E., Nossol, A. B. S., Guo, S. X., J. Mater. Chem. C, 2, 870878(2014).CrossRefGoogle Scholar
Liu, C., Zhang, H., Tang, Y., et al. , J. Mater.Chem.A, 2, 45804587(2014).Google Scholar
Choucair, M., Thordarson, P., J. A. Stride, Nat. Nanotechnol., 4, 3033(2009).CrossRefGoogle Scholar
Li, X., Cai, W., An., J., Science, 324, 13121314(2009).Google Scholar
Wang, S., Huang, X., Carbon, 50, 21192125(2012).Google Scholar
Aravind, S. S. J., Eswaraiah, V. and Ramaprabhu, S., J. Mater.Chem., 21, 1709417097(2011).Google Scholar