Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:08:50.507Z Has data issue: false hasContentIssue false

The Physical and Chemical Properties of MoS2(1-x)Te2x Alloy Synthesized by Co-sputtering and Chalcogenization and Their Dependence on Fabrication Conditions

Published online by Cambridge University Press:  10 March 2020

Yusuke Hibino*
Affiliation:
Meiji University, Kanagawa 214-8571, Japan Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
Kota Yamazaki
Affiliation:
Meiji University, Kanagawa 214-8571, Japan
Yusuke Hashimoto
Affiliation:
Meiji University, Kanagawa 214-8571, Japan
Yuya Oyanagi
Affiliation:
Meiji University, Kanagawa 214-8571, Japan
Naomi Sawamoto
Affiliation:
Meiji University, Kanagawa 214-8571, Japan
Hideaki Machida
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan
Masato Ishikawa
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan
Hiroshi Sudo
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan
Hitoshi Wakabayashi
Affiliation:
Tokyo Institute of Technology, Kanagawa 226-8502, Japan
Atsushi Ogura
Affiliation:
Meiji University, Kanagawa 214-8571, Japan
Get access

Abstract

MoS2(1-x)Te2x, the alloy of MoS2 and MoTe2 was fabricated with just co-sputtering and the combination of co-sputtering with following thermal treatment in chalcogen ambient. Phase separation, where MoTe2 was segregated rather than S and Te being uniformly distributed, was observed for some samples. From the physical structure evaluation using XRD, it was shown that the samples that was sulfurized after unintentional oxidation during shelf time exhibited no phase separation. It was suggested that oxidation of Mo or amorphous nature of the film at the chalcogenization stage may prevent the phase separation. In addition, some samples were stored in desiccator for stability evaluation. It was revealed that the samples undergo oxidation to different extent depending on the carrier gas used in tellurization. Finally, the bandgap and band structure was evaluated for samples with different Te concentration. The bandgap showed bowing behavior for different Te concentration with the bowing parameter b = -1.21 eV. Combined with the bandgap evaluation, the valence analysis with XPS showed that the band structure shifted according to the Te concentration. The shift in bandgap allows flexible band alignment which is expected to expand the materials applicability.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., Kim, C. J., Muller, D., and Park, J., Nature 520, 656 (2015).CrossRefGoogle Scholar
Bao, W., Cai, X., Kim, D., Sridhara, K., and Fuhrer, M. S., Appl. Phys. Lett. 102, 042104 (2013).CrossRefGoogle Scholar
Zheng, Z., Zhang, T., Yao, J., Zhang, Y., Xu, J., and Yang, G., Nanotechnol . 27, 225501 (2016).CrossRefGoogle Scholar
Ling, Z. P., Yang, R., Chai, J. W., Wang, S. J., Leong, W.S., Tong, Y., Lei, D., Zhou, Q., Gong, X., Chi, D. Z., and Ang, K.-W., Optics Express 23, 13580 (2015).CrossRefGoogle Scholar
Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Wang, Y. -H., Huang, K. -J., and Wu, X., Biosens. Bioelectron. 97, 305 (2017).CrossRefGoogle Scholar
Chia, X., Yong, A., Eng, S., Ambrosi, A., Tan, S. M., and Pumera, M., Chem. Rev. 115, 11941 (2015).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, Jie, and Heinz, Tony. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
He, K., Poole, C., Mak, K. F., and Shan, J., Nano Lett . 13, 2931 (2013).CrossRefGoogle Scholar
Hibino, Y., Ishihara, S., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudo, H., Wakabayashi, H., and Ogura, A., MRS Advances 2, 1557 (2017).CrossRefGoogle Scholar
Hibino, Y., Ishihara, S., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Wakabayashi, H., and Ogura, A., J. Mater. Res. 32, 3021 (2017).CrossRefGoogle Scholar
Hibino, Y., Ishihara, S., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H., and Ogura, A., Jpn. J. Appl. Phys. 57, 06HB04 (2018).CrossRefGoogle Scholar
Chen, Y., Xi, J., Dumcenco, D. O., Liu, Z., Suenaga, K., Wang, D., Shuai, Z., Huang, Y. S., and Xie, L., ACS Nano 7, 4610 (2013).CrossRefGoogle Scholar
Mann, J., Ma, Q., Odenthal, P. M., Isarraraz, M., Le, D., Preciado, E., Barroso, D., Yamaguchi, K., von Son Palacio, G., Nguyen, A., Tran, T., Wurch, M., Nguyen, A., Klee, V., Bobek, S., Sun, D., Heinz, T. F., Rahman, T. S., Kawakami, R., and Bartels, L., Adv. Mater. 26, 1399 (2014).CrossRefGoogle Scholar
Ishihara, S., Hibino, Y., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Wakabayashi, H., and Ogura, A., ECS J. Sol. State Sci. Technol. 5, Q3012 (2016)CrossRefGoogle Scholar
Duerloo, K. -A. N., Li, Y., and Reed, E. J., Nat. Commun. 5, 4214 (2014).CrossRefGoogle Scholar
Keum, D. H., Cho, S., Kim, J. H., Choe, D. H., Sung, H. J., Kan, M., Kang, H., Hwang, J. Y., Kim, S. W., Yang, H., Chang, K. J., and Lee, Y. H., Nat. Phys. 11, 482 (2015).CrossRefGoogle Scholar
Kang, J., Tongay, S., Li, J., and Wu, J., J. Appl. Phys. 113, 143703 (2013).CrossRefGoogle Scholar
Komsa, H. P. and Krasheninnikov, A. V., J. Phys. Chem. Lett. 3, 3652 (2012).CrossRefGoogle Scholar
Gong, C., Zhang, H., Wang, W., Colombo, L., Wallace, R. M., and Cho, K., Appl. Phys. Lett. 107, 139904 (2015).CrossRefGoogle Scholar
Lezama, I. G., Ubaldini, A., Longobardi, M., Giannini, E., Renner, C., B Kuzmenko, A., and F Morpurgo, A., 2D Mater. 1, 021002 (2014).CrossRefGoogle Scholar