Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:51:43.209Z Has data issue: false hasContentIssue false

PHOTOCATALYTIC PERFORMANCE OF ZnO/N-rGO FOR LIGNIN DEGRADATION UNDER VIS LIGHT ENERGY

Published online by Cambridge University Press:  04 November 2019

A. Ramos-Corona
Affiliation:
División de Estudios de posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, Z.P. 58030 Morelia, Michoacán, México.
R. Rangel*
Affiliation:
División de Estudios de posgrado de la Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Gral. Francisco J. Múgica S/N, Ciudad Universitaria, Z.P. 58030 Morelia, Michoacán, México.
J. J. Alvarado-Gil
Affiliation:
Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Z.P.97310, Mérida, Yucatán, México.
E. Adem
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Z. C.04510, México City, México
*
Get access

Abstract

The present work describes a simple method to produce zinc oxide nanoparticles supported in nitrogen-doped reduced graphene oxide, ZnO/N-rGO. The rGO structures were nitrogen-doped using hydrazine as nitrogen source (N-rGO) with the purpose of enhancing the rGO capability to promote the electrons transport along their surface. Thus, ZnO/N-rGO catalytic systems were tested as photocatalyst to degrade methylene blue and lignin molecules under ultraviolet (UV) and visible (Vis) light irradiation. N-doping of rGO was confirmed by X-ray photoelectron spectroscopy (XPS). Photocatalytic degradation studies confirm better performance of the ZnO/N-rGO in comparison to ZnO. The percentage of lignin degradation for the ZnO/N-rGO compound under UV was 59%, while using visible energy it was achieved 46%, in a time of 70 min.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nocuń, M., Kwaśny, S., Kwaśny, M., and Grelowska, I., "Spectroscopy studies of TiO2/carbon nanotubes nanocomposite layers synthesized by the sol-gel method", J. Mol. Struct., vol. 1167 pp. 194199, 2018. doi:10.1016/j.molstruc.2018.04.095.CrossRefGoogle Scholar
Gan, L., Shang, S., Yuen, C.W.M., Jiang, S.X., and Hu, E., "Hydrothermal synthesis of magnetic CoFe2O4/graphene nanocomposites with improved photocatalytic activity", Appl. Surf. Sci., vol. 351 pp. 140147, 2015. doi:10.1016/j.apsusc.2015.05.130.CrossRefGoogle Scholar
Chen, D., Feng, H., and Li, J., "Graphene oxide: Preparation, functionalization, and electrochemical applications", Chem. Rev., vol. 112, pp. 60276053,2012. doi:10.1021/cr300115g.CrossRefGoogle ScholarPubMed
Kashinath, L., Namratha, K., and Byrappa, K., "Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes", Appl. Surf. Sci., vol.357, pp. 1849-1856, 2015. doi:10.1016/j.apsusc.2015.09.072.CrossRefGoogle Scholar
Kanakaraj, S.N., Hsieh, Y.Y., Adusei, P.K., Homan, B., Fang, Y., Zhang, G., Mishra, S., Gbordzoe, S., and Shanov, V., "Nitrogen-doped CNT on CNT hybrid fiber as a current collector for high-performance Li-ion capacitor", Carbon N. Y., vol. 149, pp. 407-418 407–418, 2019. doi:10.1016/j.carbon.2019.04.032.CrossRefGoogle Scholar
Gao, H., Song, L., Guo, W., Huang, L., Yang, D., Wang, F., Zuo, Y., Fan, X., Liu, Z., Gao, W., Vajtai, R., Hackenberg, K., and Ajayan, P.M., "A simple method to synthesize continuous large area nitrogen-doped graphene", Carbon N. Y., vol. 50, pp. 44764482, 2012. doi:10.1016/j.carbon.2012.05.026.CrossRefGoogle Scholar
Liu, L., Dong, C., Wu, K., Ye, Y., and Wei, X., "Synthesis of nitrogen-doped graphene–ZnO nanocomposites with improved photocatalytic activity", Mater. Lett., vol. 129, pp. 170173, 2014. doi:10.1016/j.matlet.2014.05.048.CrossRefGoogle Scholar
Miri, M.G., Khajeh, M., Oveisi, A.R., Bohlooli, M., "Urea-based porous organic polymer/graphene oxide hybrid as a new sorbent for highly efficient extraction of bovine serum albumin prior to its spectrophotometric determination", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 205, pp. 200206, 2018. doi:10.1016/j.saa.2018.07.034.CrossRefGoogle ScholarPubMed
Chen, Y., Fu, X., Yue, Y., Zhang, N., Feng, J., and Sun, H., "Flexible and transparent supercapacitor based on ultrathin Au/graphene composite electrodes", Appl. Surf. Sci., vol. 104-111, pp. 467468, 2019. doi:10.1016/j.apsusc.2018.10.093.Google Scholar
Kumar, S., and Ojha, A.K., "In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation", Mater. Chem. Phys., vol. 171, pp. 126136, 2016. doi:10.1016/j.matchemphys.2015.12.008.CrossRefGoogle Scholar
Lee, K.M., Lai, C.W., Ngai, K.S., and Juan, J.C., "Recent developments of zinc oxide based photocatalyst in water treatment technology: A review", Water Res., vol. 88, pp. 428448, 2016. doi:10.1016/j.watres.2015.09.045.CrossRefGoogle ScholarPubMed
Yogamalar, R., and Bose, A., "Synthesis, Dopant Study and Device Fabrication of Zinc Oxide Nanostructures: Mini Review", Prog. Nanotechnol., vol. 2, pp. 24-44, 2013. 1–20. http://www.academicpub.org/pnn/paperInfo.aspx?paperid=2678.Google Scholar
Rangel, R., Cedeño, V., Ramos-Corona, A., Gutiérrez, R., Alvarado-Gil, J.J., Ares, O., Bartolo-Pérez, P., and Quintana, P., "Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis", Appl. Phys. A Mater. Sci. Process., vol. 123, 2017. doi:10.1007/s00339-017-1137-5.CrossRefGoogle Scholar
Zno, N., Qin, H., Li, W., Xia, Y., He, T., Photocatalytic Activity of Heterostructures Based on ZnO and, (2011) 31523156.CrossRefGoogle Scholar
Ramos-Corona, A., Rangel, R., Alvarado-Gil, J.J., Bartolo-Pérez, P., Quintana, P., and Rodríguez-Gattorno, G., "Photocatalytic performance of nitrogen doped ZnO structures supported on graphene oxide for MB degradation", Chemosphere., vol. 236, 2019. doi:10.1016/j.chemosphere.2019.124368.CrossRefGoogle ScholarPubMed
Yeber, M.C., Rodr, J., Freer, J., Dur, N., "Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO", vol. 41, pp. 11931197, 2000.Google Scholar
Xu, T., Zhang, L., Cheng, H., Zhu, Y., Applied Catalysis B: Environmental Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, "Applied Catal. B, Environ. 101 (2011) 382387. doi:10.1016/j.apcatb.2010.10.007.CrossRefGoogle Scholar
Ocakoglu, K., Mansour, S.A., Yildirimcan, S., Al-ghamdi, A.A., El-tantawy, F., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods, Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 148 (2015) 362368. doi:10.1016/j.saa.2015.03.106.CrossRefGoogle Scholar
Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z., Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction, J. Alloys Compd. 509 (2011) 1008610091. doi:10.1016/j.jallcom.2011.08.045.CrossRefGoogle Scholar
Dahm, A., and Lucia, L.A., "Titanium Dioxide Catalyzed Photodegradation of Lignin in Industrial Effluents", Ind. Eng. Chem. Res., vol. 43, pp. 79968000, 2004. doi:10.1021/ie0498302.CrossRefGoogle Scholar
Yang, N., "The Preparation of Nano Composites and Their Applications in Solar Energy Conversion", Springer Theses., vol. 53, pp. 235, 2017. doi:10.1007/978-3-662-53485-4.CrossRefGoogle Scholar
Zhang, Y., Cao, B., Zhang, B., Qi, X., and Pan, C., "The production of nitrogen-doped graphene from mixed amine plus ethanol fl ames", Thin Solid Films., vol. 520, pp. 68506855, 2012. doi:10.1016/j.tsf.2012.07.085.CrossRefGoogle Scholar
Yang, W.D., Li, Y.R., and Lee, Y.C., "Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide", Appl. Surf. Sci., vol. 380, pp. 249256, 2016. doi:10.1016/j.apsusc.2016.01.118.CrossRefGoogle Scholar
Yokomizo, Y., Krishnamurthy, S., and Kamat, P. V., "Photoinduced electron charge and discharge of graphene-ZnO nanoparticle assembly", Catal. Today., vol. 199, pp. 3641, 2013. doi:10.1016/j.cattod.2012.04.045.CrossRefGoogle Scholar