Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:44:23.841Z Has data issue: false hasContentIssue false

Needs and Enabling Technologies for Stretchable Electronics Commercialization

Published online by Cambridge University Press:  09 January 2017

Edward Tan
Affiliation:
Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
Qingshen Jing
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
Michael Smith
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
Sohini Kar-Narayan
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
Luigi Occhipinti*
Affiliation:
Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom
*
*(Email: lgo23@cam.ac.uk)
Get access

Abstract

Stretchable electronics represent an emerging class of devices that can be compressed, twisted and conform to very complicated shapes. The mechanical and electrical compliances of the technology promise to open up applications for healthcare, energy and entertainment purposes. However, advancement in the field has been hindered by material related constraints. Moreover, the current microfabrication facilities are optimized for rigid substrates such as silicon, which have significant different properties compared to elastomers. In this paper, four categories of enabling technologies for stretchable electronics commercialization are critically reviewed, namely: the novel design of stretchable structures, use of non-conventional materials, state-of-art printing techniques and also the patterning of electrodes or metal interconnects via conventional manufacturing techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chortos, A. & Bao, Z. Skin-inspired electronic devices. Mater. Today 17, 321331 (2014).CrossRefGoogle Scholar
Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and Stretchable Electronics for Biointegrated Devices. Annu. Rev. Biomed. Eng. 14, 113128 (2012).CrossRefGoogle ScholarPubMed
Lacour, S. P. et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput 48, 945–54 (2010).CrossRefGoogle ScholarPubMed
Lee, J. H., Kim, H., Kim, J. H. & Lee, S.-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16, 959976 (2016).CrossRefGoogle ScholarPubMed
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937950 (2016).CrossRefGoogle ScholarPubMed
Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, 112 (2016).CrossRefGoogle ScholarPubMed
Fan, F. R., Tang, W. & Wang, Z. L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 28, 42834305 (2016).CrossRefGoogle ScholarPubMed
Kim, C.-C. et al. Highly stretchable, transparent ionic touch panel. Science 353, 682–7 (2016).CrossRefGoogle ScholarPubMed
Marketsandmarkets.com. Stretchable Electronics Market by Component - 2023. (2015). Available at: http://www.marketsandmarkets.com/Market-Reports/stretchable-electronic-market-181339852.html. (Accessed: 6th December 2016)Google Scholar
Future Markets, inc. Nanotechnology in Smart Textiles and Wearables, Medical and Healthcare. (2016). Available at: http://www.reportlinker.com/p04422604-summary/Nanotechnology-in-Smart-Textiles-and-Wearables.html. (Accessed: 6th December 2016)Google Scholar
Pailler-Mattei, C., Bec, S. & Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30, 599606 (2008).CrossRefGoogle ScholarPubMed
Kim, D.-H. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–23 (2011).CrossRefGoogle ScholarPubMed
Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 311, 208212 (2006).CrossRefGoogle ScholarPubMed
Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).CrossRefGoogle ScholarPubMed
Gao, L. et al. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano 9, 59685975 (2015).CrossRefGoogle ScholarPubMed
Liu, Z. F. et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 349, (2015).CrossRefGoogle ScholarPubMed
Fruett, F. The Piezojunction Effect in Silicon, its Consequences and Applications for Integrated Circuits and Sensors. (Delft University Press, Delft, 2001).Google Scholar
Lacour, S. P., Jones, J., Wagner, S., Li, T. & Suo, Z. Stretchable Interconnects for Elastic Electronic Surfaces. Proceedings of the IEEE 93, 14591466 (2005).CrossRefGoogle Scholar
Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105, 18675–80 (2008).CrossRefGoogle ScholarPubMed
Vanfleteren, J. et al. Printed circuit board technology inspired stretchable circuits. MRS Bull. 37, 254260 (2012).CrossRefGoogle Scholar
Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).CrossRefGoogle ScholarPubMed
Someya, T., editor, Stretchable Electronics (WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim, 2013).Google Scholar
Young Oh, J. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nat. Publ. Gr. 539, (2016).Google Scholar
Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science 38, 19611977 (2013).CrossRefGoogle Scholar
Mohammed, A. & Pecht, M. A stretchable and screen-printable conductive ink for stretchable electronics. Appl. Phys. Lett. 109, 184101 (2016).CrossRefGoogle Scholar
Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).CrossRefGoogle ScholarPubMed
Jin, S. W., Park, J., Hong, S. Y., Park, H. & Jeong, Y. R. Stretchable Loudspeaker using Liquid Metal Microchannel. Nat. Publ. Gr. 5, 113 (2000).Google Scholar
Li, G., Wu, X. & Lee, D.-W. A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability. Lab Chip 16, 13661373 (2016).CrossRefGoogle ScholarPubMed
Gao, Y., Shi, W., Wang, W., Leng, Y. & Zhao, Y. Inkjet Printing Patterns of Highly Conductive Pristine Graphene on Flexible Substrates. Ind. Eng. Chem. Res. 53, 1677716784 (2014).CrossRefGoogle Scholar
Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853857 (2010).CrossRefGoogle ScholarPubMed
Sekiguchi, A. et al. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Lett. 15, 57165723 (2015).CrossRefGoogle ScholarPubMed
Seifert, T. et al. Additive Manufacturing Technologies Compared: Morphology of Deposits of Silver Ink Using Inkjet and Aerosol Jet Printing. Ind. Eng. Chem. Res. 54, 769779 (2015).CrossRefGoogle Scholar
Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 93, 394412 (2009).CrossRefGoogle Scholar
Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703713 (2008).CrossRefGoogle ScholarPubMed
Castrejón-Pita, J. R. et al. Future, opportunities and challenges of inkjet technologies. At. Sprays 23, 541565 (2013).CrossRefGoogle Scholar
Kim, J. et al. Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene-Nanowire Hybrid Nanostructures. Adv. Mater. 27, 32923297 (2015).CrossRefGoogle ScholarPubMed
Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458463 (2013).CrossRefGoogle ScholarPubMed
Optomec. Aerosol Jet 300 Series Systems - Datasheet. (2015). Available at: http://www.optomec.com/wp-content/uploads/2014/04/AJ-300-Datasheet_Web.pdf. (Accessed: 4th August 2016)Google Scholar
Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900906 (2008).CrossRefGoogle ScholarPubMed
Grunwald, I. et al. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies. Biofabrication 2, 014106 (2010).CrossRefGoogle ScholarPubMed
Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954960 (2013).CrossRefGoogle ScholarPubMed
Tait, J. G. et al. Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Org. Electron. physics, Mater. Appl. 22, 4043 (2015).Google Scholar
Wang, K., Chang, Y. H., Zhang, C. & Wang, B. Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon N. Y. 98, 397403 (2016).CrossRefGoogle Scholar
Liu, R. et al. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology 23, 505301 (2012).CrossRefGoogle ScholarPubMed
Guo, L. & Deweerth, S. P. An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6, 28472852 (2010).CrossRefGoogle Scholar
Adrega, T. & Lacour, S. P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J. Micromechanics Microengineering 20, 055025 (2010).CrossRefGoogle Scholar
Chou, N. et al. Crack-free and reliable lithographical patterning methods on PDMS substrate. J. Micromechanics Microengineering 23, 125035 (2013).CrossRefGoogle Scholar
Lee, J. N., Park, C. & Whitesides, G. M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 75, 65446554 (2003).CrossRefGoogle ScholarPubMed
Patel, J. N., Kaminska, B., Gray, B. L. & Gates, B. D. A sacrificial SU-8 mask for direct metallization on PDMS. J. Micromechanics Microengineering 19, 115014 (2009).CrossRefGoogle Scholar
Jeong, D.-W., Jang, N.-S., Kim, K.-H. & Kim, J.-M. A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network. RSC Adv. 6, 7441874425 (2016).CrossRefGoogle Scholar
Meacham, K. W., Giuly, R. J., Guo, L., Hochman, S. & DeWeerth, S. P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdevices 10, 259269 (2008).CrossRefGoogle ScholarPubMed
Franssila, S. Introduction to Microfabrication Introduction to Microfabrication Second Edition. (John Wiley & Sons, Ltd, Chichester, 2010).CrossRefGoogle Scholar
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 347, (2015).CrossRefGoogle ScholarPubMed
Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 838843 (2014).CrossRefGoogle ScholarPubMed
Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–605 (2011).CrossRefGoogle ScholarPubMed
Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 9599 (2013).CrossRefGoogle ScholarPubMed
Byun, I., Coleman, A. W. & Kim, B. Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive. J. Micromech. Microeng 23, 85016–10 (2013).CrossRefGoogle Scholar
Deng, W. et al. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates. Sci. Rep. 4, 47724776 (2014).CrossRefGoogle ScholarPubMed