Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T03:57:35.705Z Has data issue: false hasContentIssue false

Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage

Published online by Cambridge University Press:  06 May 2018

Yiqun Yang
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
Kayla Strong
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
Gaind P. Pandey*
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
Lamartine Meda
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125
*
Get access

Abstract

Vanadium Pentoxide (V2O5) has been identified as a potential cathode material owning to its high specific capacity, theoretically, 441 mAh g-1 for 3Li+ ions insertion/extraction. However, the intrinsic drawbacks of V2O5, i.e. structural instability and poor electronic and ionic conductivity, greatly inhibit its application as a cathode. Here, we report a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal reaction to synthesize V2O5 nanoclusters. Unique aggregated fiber structure was obtained after annealing. To achieve a porous structure and increase the conductivity, nitrogen-doped Graphene (NG) suspended in ethylene glycol was added to the reaction mixture. The obtained spherical V2O5 nanoparticles and NG sheets were randomly dispersed in the matrix of the V2O5 spheres. As a cathode material for lithium-ion batteries, the V2O5/NG hybrids demonstrate better rate performance compared to the bundle-like V2O5 fibers, delivering higher specific capacity of ∼ 300 and 150 mAh g-1 at a rate of C/10 and 5C, respectively. The enhanced performance in lithium storage are attributed to the synergistic effect of the nanostructured V2O5/NG composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gao, X. T., Zhu, X. D., Le, S. R., Yan, D. J., Qu, C. Y., Feng, Y. J., Sun, K. N. and Liu, T. T., ChemElectroChem 3, 1729 (2016).CrossRefGoogle Scholar
Wang, Y., Takahashi, K., Lee, K. H. and Cao, G. Z., Adv. Funct. Mater. 16, 1133 (2006).CrossRefGoogle Scholar
Liu, Y., Uchaker, E., Zhou, N., Li, J., Zhang, Q. and Cao, G., J. Mater. Chem. 22, 24439 (2012).CrossRefGoogle Scholar
Zhang, X.-F.; Wang, K.-X.; Wei, X.; Chen, J.-S. Chemistry of Materials 23, 5290 (2011).CrossRefGoogle Scholar
Sathiya, M., Prakash, A. S., Ramesha, K., Tarascon, J. M. and Shukla, A. K., J. Amer. Chem. Soc. 133, 16291 (2011).CrossRefGoogle Scholar
Kong, D., Li, X., Zhang, Y., Hai, X., Wang, B., Qiu, X., Song, Q., Yang, Q.-H. and Zhi, L., Energy & Environ. Sci 9, 906 (2016).CrossRefGoogle Scholar
Mateti, S., Rahman, M. M., Li, L. H., Cai, Q. and Chen, Y., RSC Adv. 6, 35287 (2016).CrossRefGoogle Scholar
Cheng, J., Wang, B., Xin, H. L., Yang, G., Cai, H., Nie, F. and Huang, H., J. Mater. Chem. A 1, 10814 (2013).CrossRefGoogle Scholar
Li, Z.-F., Zhang, H., Liu, Q., Liu, Y., Stanciu, L and Xie, J., ACS Appl. Mater. Interfaces 6, 18894 (2014).CrossRefGoogle Scholar
Yan, B., Li, X., Bai, Z., Zhao, Y., Dong, L., Song, X., Li, D., Langford, C. and Sun, X., Nano Energy 24, 32 (2016).CrossRefGoogle Scholar
Pandey, G. P., Liu, T., Brown, E., Yang, Y., Li, Y., Sun, X. S., Fang, Y. and Li, J., ACS Appl. Mater. Interfaces 8, 9200 (2016).CrossRefGoogle Scholar
Kim, T., Shin, J., You, T.S., Lee, H., , H. and Kim, J., Electrochim. Acta 164, 227 (2015).CrossRefGoogle Scholar
Gallasch, T., Stockhoff, T., Baither, D. and Schmitz, G., J. Power Sources 196, 428 (2011).CrossRefGoogle Scholar
Brown, E., Acharya, J., Pandey, G. P., Wu, J. and Li, J., Adv. Mater. Interfaces 3, 1600824 (2016).CrossRefGoogle Scholar
Pang, H., Song, Q., Tian, P., Cheng, J., Zou, N. and Ning, G., Mater.Lett. 171, 5 (2016).CrossRefGoogle Scholar
Mai, L., An, Q., Wei, Q., Fei, J., Zhang, P., Xu, X., Zhao, Y., Yan, M., Wen, W. and Xu, L., Small 10, 3032 (2014).CrossRefGoogle Scholar
Perera, S. D., Liyanage, A. D., Nijem, N., Ferraris, J. P., Chabal, Y. J. and Balkus, K. J., J. Power Sources 230, 130 (2013).CrossRefGoogle Scholar
Zhang, H., Xie, A., Wang, C., Wang, H., Shen, Y. and Tian, X., ChemPhysChem 15, 366 (2014).CrossRefGoogle Scholar
Chen, X., Sun, X. and Li, Y., Inorg. Chem. 41, 4524 (2002).CrossRefGoogle Scholar
Tan, H. T., Rui, X., Sun, W., Yan, Q. and Lim, T. M., Nanoscale 7, 14595 (2015).CrossRefGoogle Scholar
Liu, Q., Li, Z.-F., Liu, Y., Zhang, H., Ren, Y., Sun, C.-J., Lu, W., Zhou, Y., Stanciu, L., Stach, E. A. and Xie, J., Nat. Commun. 6, 6127 (2015).CrossRefGoogle Scholar