Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:53:37.375Z Has data issue: false hasContentIssue false

Multiple Metamaterial Pattern Integration for Polarization Selective Photodetector Applications

Published online by Cambridge University Press:  11 January 2018

Corey Shemelya
Affiliation:
Electrical and Computer Engineering Department, Tufts University, 161 College Ave. Medford MA, 02155, U.S.A. Electrical and Computer Engineering Department, The Technical University of Kaiserslautern, Erwin-Schrödinger-Straβe 1, 67663 Kaiserslautern, Germany
Nicole A. Pfiester
Affiliation:
Electrical and Computer Engineering Department, Tufts University, 161 College Ave. Medford MA, 02155, U.S.A.
Dante DeMeo
Affiliation:
Electrical and Computer Engineering Department, Tufts University, 161 College Ave. Medford MA, 02155, U.S.A.
Thomas Rotter
Affiliation:
Electrical and Computer Engineering Department, The University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106, U.S.A.
Ganesh Balakrishnan
Affiliation:
Electrical and Computer Engineering Department, The University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106, U.S.A.
Thomas E. Vandervelde*
Affiliation:
Electrical and Computer Engineering Department, Tufts University, 161 College Ave. Medford MA, 02155, U.S.A.
Get access

Abstract

Interest in active metamaterial (MM) devices has recently increased due to their potential for tunable, switchable, and scalable optical responses. More specifically, a dynamic, on-chip MM polarizer has applications ranging from material characterization to sensing without the need for cumbersome external filters. This work demonstrates efforts to optimize MM devices for dynamic polarization filtering by combining elements from split-ring resonators, wire-pairs, and fishnet patterns. The polarization grid has been designed to operate under an applied voltage with simulated on/off ratios of 75% and dynamic polarization selectivity of 70%. Samples have been fabricated using epitaxial GaAs on sapphire with various n-type doping concentrations to approximate electrical tuning.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Husnik, M., Linden, S., Diehl, R., Niegemann, J., Busch, K., and Wegener, M.. Phys. Rev. Lett. 109, 233902 (2012).Google Scholar
von Cube, F., Irsen, S., Diehlet, R., Niegemann, J., Busch, K., and Linden, S.. Nano Lett. 13, 2 (2013).Google Scholar
Kanté, B., Burokur, S. N., Gadot, F., and de Lustrac, A.. Proc. of SPIE Vol. 6987, 69870F-1 (2008).Google Scholar
Rottler, A., Harland, M., Broll, M., Schwaiger, S., Stickler, D., Stemmann, A., Heyn, C., Heitmann, D., and Mendach, S.. Appl. Phys. Lett. 100, 151104 (2012).CrossRefGoogle Scholar
Wei, X., Shi, H., Dong, X., Lu, Y., and Du, C.. Appl. Phys. Lett. 97, 011904 (2010).CrossRefGoogle Scholar
Hu, X., Li, M., Ye, Z., Leung, W. Y., Ho, K.-M., and Lin, S.-Y.. Appl. Phys. Lett. 93, 241108 (2008).Google Scholar
Guillaumée, M., Dunbar, L. A., Santschi, C., Grenet, E., Eckert, R., Martin, O. J. F., and Stanley, R. P.. Appl. Phys. Lett. 94, 193503 (2009).Google Scholar
Dutta, N., Mirza, I. O., Shi, S., and Prather, D. W.. Materials 3, 52835292 (2010).CrossRefGoogle Scholar
Shcherbakov, M. R., Vabishchevich, P. P., Dolgova, T. V.. Zaitsev, A. A., Sigov, A. S., and Fedyanin, A. A.. Proc. of SPIE, Vol. 7353 (2009).Google Scholar
Downs, C. and Vandervelde, T.E., Sensors, 13, 4, 50545098 (2013).Google Scholar
Rosenberg, J., Shenoi, R. V., Vandervelde, T. E., Krishna, S., and Painter, O., App. Phys. Lett. 95, 161101 (2009)CrossRefGoogle Scholar
Pfiester, N., Shemelya, C., Rotter, T., Balakrishnan, G., Vandervelde, T. E., Proc. SPIE 8982, Optical Components and Materials XI, 89820M (2014).Google Scholar
Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J.. IEEE Trans.. on Microwave Theory and Techniques 47, 11 (1999).CrossRefGoogle Scholar
Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J.. J. Phy. Condens. Matt. 10, 47854809 (1998).CrossRefGoogle Scholar
Hess, O., Pendry, J. B., Maier, S. A., Oulton, R. F., Hamm, J. M., and Tsakmakidis, K. L.. Nature Mat.11, 573584 (2012).CrossRefGoogle Scholar
Gu, J., Singh, R., Azad, A. K., Han, J., Taylor, A. J., O’Hara, J. F., and Zhang, W.. Opt. Mat. Exp., Vol. 2, No. 1, January (2012).CrossRefGoogle Scholar
Padilla, W. J., Taylor, A. J., Highstrete, C., Lee, Mark, and Averitt, R. D.. Phys. Rev. Lett., 96, 107401 (2006).Google Scholar
Kim, E., Wu, W., Ponizovskaya, E., Yu, Z., Bratkovsky, A. M., Wang, S.-Y., Williams, R. S., and Shen, Y. R.. Appl. Phys. Letts. 91, 173105 (2007).Google Scholar
Chen, H.-T., Padilla, W. J., Cich, M. J., Azad, A. K., Averitt, R. D., and Taylor, A. J.. Nature Photonics, 3, 148151 (2009).Google Scholar
Chen, H.-T., O’Hara, J. F., Azad, A. K., Taylor, A. J., Averitt, R. D., Shrekenhamer, D. B., and Padilla, W. J.. Nature Photonics, 2, 295298 (2008).CrossRefGoogle Scholar
Smith, D. R., Schultz, S., Markos, P., Soukoulis, C. M.. Phys. Rev. B 65, 195104 (2002).CrossRefGoogle Scholar