Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:04:41.701Z Has data issue: false hasContentIssue false

MOVPE of Large-Scale MoS2/WS2, WS2/MoS2, WS2/Graphene and MoS2/Graphene 2D-2D Heterostructures for Optoelectronic Applications

Published online by Cambridge University Press:  07 February 2020

Annika Grundmann*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Clifford McAleese
Affiliation:
AIXTRON Ltd., Anderson Road, Swavesey, Cambridge CB24 4FQ, United Kingdom
Ben Richard Conran
Affiliation:
AIXTRON Ltd., Anderson Road, Swavesey, Cambridge CB24 4FQ, United Kingdom
Andrew Pakes
Affiliation:
AIXTRON Ltd., Anderson Road, Swavesey, Cambridge CB24 4FQ, United Kingdom
Dominik Andrzejewski
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg, Germany
Tilmar Kümmell
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg, Germany
Gerd Bacher
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg, Germany
Kenneth Boh Khin Teo
Affiliation:
AIXTRON Ltd., Anderson Road, Swavesey, Cambridge CB24 4FQ, United Kingdom
Michael Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
Holger Kalisch
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Andrei Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Get access

Abstract

Most publications on (opto)electronic devices based on 2D materials rely on single monolayers embedded in classical 3D semiconductors, dielectrics and metals. However, heterostructures of different 2D materials can be employed to tailor the performance of the 2D components by reduced defect densities, carrier or exciton transfer processes and improved stability. This translates to additional and unique degrees of freedom for novel device design. The nearly infinite number of potential combinations of 2D layers allows for many fascinating applications. Unlike mechanical stacking, metal-organic vapour phase epitaxy (MOVPE) can potentially provide large-scale highly homogeneous 2D layer stacks with clean and sharp interfaces. Here, we demonstrate the direct successive MOVPE of MoS2/WS2 and WS2/MoS2 heterostructures on 2” sapphire (0001) substrates. Furthermore, the first deposition of large-scale MoS2/graphene and WS2/graphene heterostructures using only MOVPE is presented and the influence of growth time on nucleation of WS2 on graphene is analysed.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Roy, K., Padmanabhan, M., Goswami, S., Sai, T. P., Ramalingam, G., Raghavan, S. and Ghosh, A., Nat. Nanotechnol. 8(11), 826 (2013).CrossRefGoogle Scholar
Jin, C., Ma, E. Y., Karni, O., Regan, E. C., Wang, F. and Heinz, T. F., Nat. Nanotechnol. 13(11), 994 (2018).CrossRefGoogle Scholar
Terrones, H., López-Urías, F., Terrones, M., Scientific Reports 3, 1549 (2013).CrossRefGoogle Scholar
Geim, A. K. and Grigorieva, I. V., Nature 499(7459, 419 (2013).CrossRefGoogle Scholar
Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J., Sinclair, R. and Wu, J., Nano Lett . 14, 3185-3190 (2014).CrossRefGoogle Scholar
Kim, H.-U., Kim, M, Jin, Y., Hyeon, Y., Kim, K. S., An, M.-S., Yang, C.-W., Kanade, V., Moon, J.-Y., Yeom, G. Y., Whang, D., Lee, J.-H. and Kim, T., Appl. Surf. Sci. 470, 129-134 (2019).CrossRefGoogle Scholar
Ago, H., Endo, H., Soís-Fernández, P., Takizawa, R., Ohta, Y., Fujita, Y., Yamamoto, K. and Tsuji, M., ACS Appl. Mater. Inter. 7(9), 5265-5273 (2015).CrossRefGoogle Scholar
Heo, H., Sung, J. H., Cha, S., Jang, B.-G., Kim, J.-Y., Jin, G., Lee, D., Ahn, J.-H., Lee, M.-J., Shim, J. H., Choi, H. and Jo, M.-H., Nat. Commun. 6, 7372 (2015).CrossRefGoogle Scholar
Lin, Y.-C., Ghosh, R. K., Addou, R., Lu, N., Eichfeld, S. M., Zhu, H., Li, M.-Y., Peng, X., Kim, M. J., Li, L.-J., Wallace, R. M., Datta, S. and Robinson, J. A., Nat. Commun. 6, 7311 (2015).CrossRefGoogle Scholar
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yacobson, B. I., Terrones, H., Terrones, M., Tay, B. K., Lou, J., Pantelides, S. T., Liu, Z., Zhou, W. and Ajayan, P. M., Nat. Mater. 13, 1135-1145 (2014).CrossRefGoogle Scholar
Lu, C.-I., Butler, C. J., Huang, J.-K., Hsing, C.-R., Yang, H.-H., Chu, Y.-H., Luo, C.-H., Sun, Y.-C., Hsu, S.-H., Ou Yang, K.-H., Wei, C.-M., Li, L.-J. and Lin, M.-T., Appl. Phys. Lett. 106, 181904 (2015).CrossRefGoogle Scholar
Ago, H., Endo, H., Solís-Fernández, P., Takizawa, R., Ohta, Y., Fujita, Y., Yamamoto, K. and Tsuji, M., ACS Appl. Mater. Interfaces 7, 5265-5273 (2015).CrossRefGoogle Scholar
Shi, Y., Zhou, W., Lu, A.-Y., Fang, W., Lee, Y.-H., Hsu, A. L., Kim, S. M., Kim, K. K., Yang, H. Y., Li, L.-J., Idrobo, J.-C. and Kong, J., Nano Lett . 6, 2784-2791 (2012).CrossRefGoogle Scholar
Bianco, G. V., Losurdo, M., Giangregorio, M. M., Sacchetti, A., Prete, P., Lovergine, N., Capezzuto, P. and Bruno, G., RSC. Adv. 5, 98700 (2015).CrossRefGoogle Scholar
Rossi, A., Büch, H., Di Rienzo, C., Miseikis, V., Convertino, D., Al-Temimy, A., Voliani, V., Gemmi, M., Piazza, V. and Coletti, Camilla, 2D Mater. 3, 031013 (2016).CrossRefGoogle Scholar
Mishra, N., Forti, S., Fabbri, F., Martini, L., McAleese, C., Conran, B. R., Whelan, P. R., Shivayogimath, A., Jessem, B. S., Buß, L., Falta, J., Aliaj, I., Roddaro, S., Flege, J. I., Bøggild, P., Teo, K. B. K. and Coletti, C., Small (2019).Google ScholarPubMed
Zhang, X., Choudhury, T. H., Chubarov, M., Xiang, X., Jariwala, B., Zhang, F., Alem, N., Wang, G.-C., Robinson, J. A. and Redwing, J. M., Nano. Lett. 18(2), 1049-1056 (2018).CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zhou, X., Shi, G., Lei, S., Yakobson, B. I., Idrobo, J.-C., Ajayan, P. M. and Lou, J., Nat. Mater. 12, 754-759 (2013).CrossRefGoogle Scholar
Marx, M., Grundmann, A., Lin, Y.-R., Andrzejewski, D., Kümmell, T., Bacher, G., Heuken, M., Kalisch, H. and Vescan, A., J. Electron. Mater. 47, 910-916 (2018).CrossRefGoogle Scholar
Wang, S., Rong, Y., Fan, Y., Pacios, M., Bhaskaran, H., He, K. and Warner, J. H., Chem. Mater. 26(22), 6371-6379 (2014).CrossRefGoogle Scholar
Das, A., Chakraborty, B. and Sood, A. K., B. Mater. Sci. 31(3), 579-584 (2008).CrossRefGoogle Scholar
Grundmann, A., Andrzejewski, D., Kümmell, T., Bacher, G., Heuken, M., Kalisch, H. and Vescan, A., MRS Advances 4(10), 593-599 (2019).CrossRefGoogle Scholar