Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:49:01.539Z Has data issue: false hasContentIssue false

Modeling of Transition Metal Color Centers in Diamond

Published online by Cambridge University Press:  09 February 2016

Nicholas W. Gothard*
Affiliation:
University of Dayton Research Institute, 300 College Park Dr., Dayton, OH 45469, U.S.A.
Douglas S. Dudis
Affiliation:
Air Force Research Laboratory, WPAFB, OH, 45433, U.S.A.
Luke J. Bissell
Affiliation:
Air Force Research Laboratory, WPAFB, OH, 45433, U.S.A.
Get access

Abstract

Diamond stands out among single-photon sources due to an intrinsically large band gap, photo-stable emission, room-temperature operation, short excited state lifetimes, and the ability to host hundreds of different color centers. Currently, most of these centers are active in the optical spectrum, but a single-photon source in the infrared would represent a significant advancement. In pursuit of this end, a number of different transition metal atoms have been studied as dopants in the diamond lattice via the GAMESS (General Atomic Molecular and Electronic Structure System) cluster calculation package. The importance of cluster size and electron correlation effects is considered, and excitation energies have been calculated via time-dependent density functional theory.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonovich, I., Castello, S., Simpson, D.A., Su, C-H., Greentree, A.D., and Prawer, S., Rep. Prog. Phys. 74, 076501 (2011).Google Scholar
Johnston, K. and Mainwood, A., Diamond Relat. Mater. 12 516 (2003).Google Scholar
Gaebel, T., Popa, I., Gruber, A., Dornhan, M., Jelezko, F., and Wrachtrup, J., New J. Phys. 6, 98 (2004)Google Scholar
Wu, E., Rabeau, J. R., Roger, G., Treussart, F., Zeng, H., Grangier, P., Prawer, S., and Roch, J.-F., New J. Phys. 9, 434 (2007).Google Scholar
Yelisseyev, A., Lawson, S., Sildos, I., Osvet, A., Nadolinny, V., Feigelson, B., Baker, J. M., Newton, M., and Yuryeva, O., Diamond Relat. Mater. 12, 2147 (2003).Google Scholar
Aharonovich, I., Castelletto, S., Johnson, B.C., McCallum, J.C., Simpson, D.A., Greentree, A.D., and Prawer, S., Phys. Rev. B 81, 121201(R) (2010).Google Scholar
Kurtsiefer, C., Mayer, S., Zarda, P., and Weinfurter, H., Phys. Rev. Lett. 85, 290 (2000).Google Scholar
von Barth, U. and Hedin, L., J. Phys. C Solid State Phys. 5, 1629 (1972).Google Scholar
Larsson, J.A. and Delaney, P., Phys. Rev. B 77, 165201 (2008).Google Scholar
McIntosh, G.C., Yoon, M., Berber, S., and Tomanek, D., Phys. Rev. B 70, 045401 (2004).Google Scholar
Zyubin, A.S., Mebel, A.M., Change, H.C., and Lin, S.H., Chem. Phys. Lett. 462, 251 (2008).Google Scholar
Dreuw, A. and Head-Gordon, M., Chem Rev. 5, 4009 (2005).Google Scholar
Gothard, N.W., Dudis, D.S., and Bissell, L.J., unpublishedGoogle Scholar