Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:01:23.791Z Has data issue: false hasContentIssue false

Modeling of Particle Formation in Arc Discharges by Monte-Carlo Based Population Balance Modeling

Published online by Cambridge University Press:  07 February 2017

Gregor Kotalczyk
Affiliation:
Institute of Technology for Nanostructures (NST) and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Duisburg, D-47057, Germany
Ivan Skenderovic
Affiliation:
Institute of Technology for Nanostructures (NST) and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Duisburg, D-47057, Germany
Frank Einar Kruis*
Affiliation:
Institute of Technology for Nanostructures (NST) and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Duisburg, D-47057, Germany
Get access

Abstract

A simulation method is presented which encompasses all relevant mechanisms, which are necessary for the description of the early stages of particle formation in arc discharges. Next to discrete coagulation and nucleation events, a continuous surface growth process is included into the simulation, making thus the description of the evaporation of thermodynamic unstable particles possible. The driving force for the nucleation and growth/evaporation is coupled to the monomer concentration in the gaseous phase and thus subject to change in the further course of the simulation. It is shown, that the simulation results gained by the incorporation of all three of these processes cannot be reproduced, if one of those processes is not simulated.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BUONAPART-E Project (2016). Available at: http://www.buonapart-e.eu/ (accessed 13 December 2016).Google Scholar
Khalili, S., Lin, Y., Armaou, A., Matsoukas, T., AIChE J. 56, 12 (2010).Google Scholar
Menz, W.J., Akroyd, J., Kraft, M., J. Comput. Phys. 256 (2014).Google Scholar
Oxtoby, D.W., Phys, J.. Condens. Matter 4, 38 (1992).Google Scholar
Zhao, H., Kruis, F.E., Zheng, C., Aerosol Sci. Technol. 43, 8 (2009).Google Scholar
Wei, J. and Kruis, F.E., J. Comput. Phys. 249 (2013).Google Scholar
Patterson, R.I.A., Wagner, W., Kraft, M., J. Comput. Phys. 230, 19 (2011).Google Scholar
Celnik, M., Patterson, R.I.A., Kraft, M., Wagner, W., Combust. Flame 148, 3 (2007).Google Scholar
Tsang, T.H. and Rao, A., Aerosol Sci. Technol. 9, 3 (1988).Google Scholar
Kumar, S. and Ramkrishna, D., Chem. Eng. Sci. 51, 8 (1996).Google Scholar
Zhao, H., Zheng, C., Xu, M., Powder Technol. 154, 23 (2005).Google Scholar
Friedlander, S.K. and Wang, C.S., J. Colloid Interface Sci. 22, 2 (1966).CrossRefGoogle Scholar
Kotalczyk, G., Skenderovic, I., Kruis, F.E., in: AIChE annual meeting, 2016. San Francisco. 978-0-8169-1097-7.Google Scholar
Lifshitz, I.M. and Slyozov, V.V., Journal of Physics and Chemistry of Solids 19, 1 (1961).CrossRefGoogle Scholar
Wagner, C., Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65, 78 (1961).Google Scholar
Park, S., Lee, K., Shimada, M., Okuyama, K., Journal of Aerosol Science 32, 2 (2001).Google Scholar
Tsantilis, S. and Pratsinis, S.E., Journal of Aerosol Science 35, 3 (2004).Google Scholar