Published online by Cambridge University Press: 27 January 2020
New data on microstructure of 16 years old (La, Pu)PO4 monazite ceramics doped with 8.1 wt% of 238Pu are presented. It is shown that the sample consists from at least two phases differing in La/Pu ratio and small precipitates of Pu-phosphate. Possible mechanisms of the compositional heterogeneity are discussed. Formation of Pu-containing rhabdophane after sample storage in air is observed. This phenomenon together with gradual mechanical destruction of the ceramic pellet formation of submicron particles will likely increase rate of radionuclides loss from the monazite-based waste form. X-ray emission lines produced by recoil uranium ions from Pu decay are analysed. It is suggested that careful examination of their relative intensities may provide important information about behaviour of "hot" recoils in nuclear waste forms.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.