Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:09:51.574Z Has data issue: false hasContentIssue false

Microstructure Design for Enhancement of Room-temperature Ductility in Multi-component TiAl Alloys

Published online by Cambridge University Press:  03 May 2019

Ryosuke Yamagata*
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, S8-8, 2-12-1, Ookayama, Megro-ku, Tokyo, 152-8552, Japan.
Yotaro Okada
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, S8-8, 2-12-1, Ookayama, Megro-ku, Tokyo, 152-8552, Japan.
Hideki Wakabayashi
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, S8-8, 2-12-1, Ookayama, Megro-ku, Tokyo, 152-8552, Japan.
Hirotoyo Nakashima
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, S8-8, 2-12-1, Ookayama, Megro-ku, Tokyo, 152-8552, Japan.
Masao Takeyama
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, S8-8, 2-12-1, Ookayama, Megro-ku, Tokyo, 152-8552, Japan.
Get access

Abstract

Effects of microstructure constituents of α2-Ti3Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. The present results, thus, confirmed the significant contribution of β phase to enhancement of the room-temperature ductility in multi-component TiAl alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clemens, H. and Mayer, S., Adv. Eng. Mater. 15, 191 (2013).CrossRefGoogle Scholar
Appel, F., Paul, J. D.ans, H.Oehring, M., Gamma Titanium Aluminides Alloys: Science and Technology , 1 ed.st (Willey-VCH, Wienheim, Germany, 2011).CrossRefGoogle Scholar
Kim, Y-W., Acta Metall. Mater. 40, 1121 (1992).CrossRefGoogle Scholar
Kruzic, J. J., Campbell, J. P., McKelvey, A. L., Choe, H. and Ritchie, R. O., Gamma Titanium Aluminides 1999 (TMS, USA, 1999) pp. 495-507.Google Scholar
Zhu, Hanliang, Seo, D. Y., Maruyama, K. and Au, P., Mater. Sci. Eng. A 483–484, 533 (2008).CrossRefGoogle Scholar
Dahar, M. S., Seifi, S. M., Bewlay, B. P. and Lewandowski, J. J., Intermetallics 57, 73 (2015).10.1016/j.intermet.2014.10.005CrossRefGoogle Scholar
Takeyama, M., Mater. Sci. Eng. A 152, 269 (1992).CrossRefGoogle Scholar
Bewlay, B. P., Nag, S., Suzuki, A. and Weimer, M. J., J. Mater. High Temp. 33, 549 (2016).CrossRefGoogle Scholar
Niu, H. Z., Kong, F. T., Xiao, S. L., Chen, X. X. and Yang, F., Intermetallics 21, 97 (2012).CrossRefGoogle Scholar
Tetsui, T., Shindo, K., Kobayashi, S. and Takeyama, M., Intermetallics 11, 299 (2003).10.1016/S0966-9795(02)00245-5CrossRefGoogle Scholar
Niu, H. Z., Chen, Y. Y., Xiao, S. L. and Xu, L. J., Intermetallics 31, 225 (2012).CrossRefGoogle Scholar
Signori, L. J., Nakamura, T., Okada, Y., Yamagata, R., Nakashima, H. and Takeyama, M., Intermetallics 100, 77 (2018).CrossRefGoogle Scholar
Takeyama, M. and Kobayashi, S., Intermetallics 13, 993 (2005).10.1016/j.intermet.2004.12.014CrossRefGoogle Scholar
Wakabayashi, H., Signori, L. J., Shaaban, A., Yamagata, R., Nakashima, H. and Takeyama, M., in Advances in Intermetallic-Based Alloys for Structural and Functional Applications, edited by Lewandowski, J., Mayer, S., Nag, S., and Yasuda, H., (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2019).Google Scholar
Takeyama, M. and Kikuchi, M., Materia Japan 35, 1058 (1996).CrossRefGoogle Scholar
Nakashima, H., Shaaban, A. and Takeyama, M., Report of the 123rd Committee on Heat-Resisting Materials and Alloys Japan Society for the Promotion of Science 60 (1) 123 (2019).Google Scholar
Murata, K., Wakabayashi, H., Shaaban, A., Yamagata, R., Nakashima, H. and Takeyama, M., Report of the 123rd Committee on Heat-Resisting Materials and Alloys Japan Society for the Promotion of Science 60 (1) 131 (2019).Google Scholar
Takeyama, M., Ohmura, Y., Kikuchi, Makoto and Matsuo, T., Intermetallics 6, 643 (1998).10.1016/S0966-9795(98)00049-1CrossRefGoogle Scholar
Yamamoto, Y., Takeyama, M. and Matsu, T., in Structural Intermetallics 2001, edited by Hemker, K. J., Dimiduk, D. M., Clemens, H., Darolia, R., Inui, H., Larsen, J. M., Sikka, V. K., Thomas, M. and Whittenberger, J. D. (Proc. of 3rd International Symposium on Structural Intermetallics, Warrendale, PA, 2001) pp. 601-606.Google Scholar
Okada, Y., Yamagata, R., Nakashima, H. and Takeyama, M., Report of the 123rd Committee on Heat-Resisting Materials and Alloys Japan Society for the Promotion of Science 59 (3) 515 (2018).Google Scholar
Kamat, S. V., Gogia, A. K. and Banerjee, D., Acta Mater . 46, 239 (1998).CrossRefGoogle Scholar
Tetsui, T., Intermetallics 10, 239 (2002).10.1016/S0966-9795(01)00121-2CrossRefGoogle Scholar