Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:00:00.687Z Has data issue: false hasContentIssue false

Microstructural and mechanical behavior study of 5052 aluminum alloy welded by FSW process

Published online by Cambridge University Press:  21 January 2020

Jorge L. Acevedo
Affiliation:
Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología 790, Saltillo, Coahuila, México
Cindy E. Morales*
Affiliation:
Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología 790, Saltillo, Coahuila, México
Bryan R. Rodriguez
Affiliation:
Corporación Mexicana de Investigación en Materiales, Ciencia y Tecnología 790, Saltillo, Coahuila, México
Paola B. Cerna
Affiliation:
Instituto Tecnológico de Saltillo, Blvd. Venustiano Carranza, Tecnológico 2400, 25280, Saltillo, Coahuila, México
*
*Corresponding autor: cemoba2@gmail.com
Get access

Abstract

Nowadays the different industries is searching continuous improvements in the welding processes of the components of its products, in order to avoid the disadvantages obtained in the past by joining their parts through conventional fusion welding processes, affecting their microstructural development and consequently decreasing the principal mechanical properties. The friction-stir welding process is a solid state technique which does not reach the melting point of the material, promoting the plasticization of the metal by controlling its microstructure and mechanical behavior. However, the after mentioned advantages are the result of an adequate control of the process parameters, so that the aim of the present investigation is to study the microstructural and mechanical development of 5052-H32 butt joints welded by FSW process using a high wear resistance tool (PCBN tool) as well as the mechanical behavior suffered.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Z., Yang, X., Zhang, J., Zhou, G., Xu, X., and Zou, B., “Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy,” Mater. Des., vol. 32, no. 8–9, pp. 44614470, 2011.CrossRefGoogle Scholar
Sagheer-abbasi, Y., “Optimization of parameters for micro friction stir welding of aluminum 5052 using Taguchi technique,” Int. J. Adv. Manuf. Technol., vol. 102, pp. 369378, 2019.CrossRefGoogle Scholar
Lienert Chair, J. M., , T.J., Mahoney, M.W., Nandan, R., Posada, M.P., Stotler, T.V., Thompson, “Friction Stir Welding,” in AWS Welding Handbook 9.3, 9.3., American Welding Society, 2007, p. 51.Google Scholar
Sidhu, M. S. and Chatha, S. S., “Friction Stir Welding – Process and its Variables: A Review,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 12, p. 5, 2012.Google Scholar
Mishra, P. S. D. N. K., , S. R., Friction stir welding and processing, 1st ed. Switzerland: Springer, 2014.CrossRefGoogle Scholar
De Mishra, P. S., , S. R. and Kumar, N., Friction Stir Welding and Processing: Science and Engineering, First., vol. 1. Springer Link, 2014.Google Scholar
Murr, L. E., “Friction-Stir Welding and Processing,” Handbook of Materials Structures, Properties, Processing and Performance, vol. 51, no. 1, El Paso TX, p. 20, 2014.Google Scholar
Hovanski, Y., Santella, M. L., and Grant, G. J., “Friction stir spot welding of hot-stamped boron steel,” Scr. Mater., vol. 57, pp. 873876, 2007.CrossRefGoogle Scholar
Kumar, K. and V Kailas, S., “The role of friction stir welding tool on material flow and weld formation,” Mater. Sci. Eng. A, vol. 485, pp. 367374, 2008.CrossRefGoogle Scholar
Meilinger, A. and Torok, I., “The importance of friction stir welding tool,” Production Processes and Systems, vol. 6, no. 1, p. 10, 2013.Google Scholar
Mondolfo, L. F., Alloys: Structure & properties, 1st ed. London: Butterworths, 1976.Google Scholar
Rambabu, P., Eswara Prasad, N., V Kutumbarao, V., and Wanhill, R. J. H., “Aluminium Alloys for Aerospace Applications,” in Aerospace Materials and Material Technologies: Volume 1: Aerospace Materials, Prasad, N. E. and Wanhill, R. J. H., Eds. Singapore: Springer Singapore, 2017, pp. 2952.CrossRefGoogle Scholar
Cobden, R. and Banbury, A., “Aluminium: Physical Properties, Characteristics and Alloys,” 1994.Google Scholar
Mondolfo, L. F., Aluminum Alloys: Structure and Properties, Second. London: Butterworths, 1979.Google Scholar
Cobden, R., Alcan, and Banbury., “Aluminium: Physical Properties, Characteristics and Alloys,” 1994.Google Scholar
Steel, R., Us, U. T., Scott, M., Us, U. T., and Appl, N., “( 12 ) Ulllted States Patent ( 10 ) Patent N0 .: ( 45 ) Date of Patent:,” 2009.Google Scholar
Mandal, N. R., Aluminum Welding, 2nd ed. Publishing House, 2005.Google Scholar
Lohwasser, D. and Chen, Z., Friction stir welding: From basics to applications. Washington D.C.: Woodhead Publishing Limited, 2010.CrossRefGoogle Scholar
Murr, L. E., “Friction-Stir Welding and Processing,” in Handbook of MAterials Structures, Properties, Processing and Performance, 2015, p. 22.Google Scholar
Kumbhar, N. T., Sahoo, S. K., Samajdar, I., Dey, G. K., and Bhanumurthy, K., “Microstructure and microtextural studies of friction stir welded aluminium alloy 5052,” Mater. Des., vol. 32, no. 3, pp. 16571666, 2011.CrossRefGoogle Scholar
Cui, G. R., Ma, Z. Y., and Li, S. X., “The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al – Mg alloy,” Acta Mater., vol. 57, no. 19, pp. 57185729, 2009.CrossRefGoogle Scholar