Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:01:41.106Z Has data issue: false hasContentIssue false

Material Reliability of Low-Temperature Boron Deposition for PureB Silicon Photodiode Fabrication

Published online by Cambridge University Press:  26 June 2018

L.K. Nanver*
Affiliation:
MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands Aalborg University, Aalborg, Denmark
K. Lyon
Affiliation:
KLA-Tencor Corporation , Milpitas, CA, United States
X. Liu
Affiliation:
MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
J. Italiano
Affiliation:
Lawrence Semiconductor Research Laboratory, Tempe, AZ, United States
J. Huffman
Affiliation:
Lawrence Semiconductor Research Laboratory, Tempe, AZ, United States
Get access

Abstract

The chemical-vapor deposition conditions for the growth of pure boron (PureB) layers on silicon at temperatures as low as 400°C were investigated with the purpose of optimizing photodiodes fabricated with PureB anodes for minimal B-layer thickness, low dark current and chemical robustness. The B-deposition is performed in a commercially-available Si epitaxial reactor from a diborane precursor. In-situ methods commonly used to improve the cleanliness of the Si surface before deposition are tested for a deposition temperature of 450°C and PureB layer thickness of 3 nm. Specifically, high-temperature baking in hydrogen, and exposure to HCl are tested. Both material analysis and electrical diode characterization indicate that these extra cleaning steps degrade the properties of the PureB layer and the fabricated diodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nanver, L.K., Qi, L., Mohammadi, V., Mok, K.R.C., de Boer, W.B., Golshani, N., Sammak, A., Scholtes, T.L.M., Gottwald, A., Kroth, U., and Scholze, F., J. Select. Topics Quantum Electron. 20 (6), 111 (2014).CrossRefGoogle Scholar
Sakic, A., van Veen, G., Kooijman, K., Vogelsang, P., Scholtes, T.L.M., de Boer, W.B., Derakhshandeh, J., Wien, W.H.A., Milosavljevic, S. and Nanver, L.K., IEEE Trans. Electron Dev. 59 (10), 27072714 (2012).CrossRefGoogle Scholar
Shi, L., Nihtianov, S., Nanver, L.K., and Scholze, F., IEEE Sensors J., 1-8 (2013).Google Scholar
Mohammadi, V., Qi, L., Golshani, N., Mok, K.R.C., de Boer, W. B., Sammak, A., Derakhshandeh, J., van der Cingel, J., and Nanver, L.K., IEEE Electron Dev. Lett., 34 (12), 15451547 (2013).CrossRefGoogle Scholar
Qi, L. and Nanver, L.K., IEEE Electron Dev. Lett., 36 (2), 102104 (2015).CrossRefGoogle Scholar
Mohammadi, V., de Boer, W.B., and Nanver, L.K., Appl. Phys. Lett. 101, 111906 (2012).CrossRefGoogle Scholar
Qi, L., and Nanver, L.K., Proc. ICMTS 2015, 169174.Google Scholar
Sarubbi, F., Scholtes, T.L.M., and Nanver, L.K., J. Elect. Mat., 39 (2), 162173 (2010).CrossRefGoogle Scholar
Reinhardt, K. and Reidy, R.F., Handbook for Cleaning for Semiconductor Manufacturing: Fundamentals and Applications, (John Wiley & Sons, 2011)Google Scholar
Lehmann, D., Seidel, F., and Zahn, D.T., SpringerPlus Methodology, 3 (82), 18 (2014).Google Scholar
Nanver, L.K., Liu, X., and Knezevic, T., Proc. ICMTS 2018, 6974.Google Scholar
Liu, X., Nanver, L.K., and Scholtes, T.L.M., J. MEMS, 26 (6), 14281434 (2017).CrossRefGoogle Scholar
Kamins, T. I. and Lefforge, D., J. ECS, 144 (2), 674678 (1997).Google Scholar