Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T21:58:04.023Z Has data issue: false hasContentIssue false

Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules

Published online by Cambridge University Press:  24 January 2017

Kyle Culhane
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
Ke Jiang
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
Aaron Neumann
Affiliation:
Department of Pathology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States
Anatoliy O. Pinchuk*
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States Department of Physics and Energy Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
*
Get access

Abstract

A laser deposition technique, based on the photo-reduction of silver ions from an aqueous solution, was used to fabricate silver nanostructure surfaces on glass cover slips. The resulting silver nanostructures exhibited plasmonic properties, which show promise in applications towards surface enhanced Raman spectroscopy (SERS). Using the standard thiophenol, the enhancement factor calculated for the deposits was approximately ∼106, which is comparable to other SERS-active plasmonic nanostructures fabricated through more complex techniques, such as electron beam lithography. The silver nanostructures were then employed in the enhancement of Raman signals from N-butyryl-L-homoserine lactone, a signaling molecule relevant to bacteria quorum sensing. In particular, the work presented herein shows that the laser-deposited plasmonic nanostructures are promising candidates for monitoring concentrations of signaling molecules within biofilms containing quorum sensing bacteria.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tanaka, T., Ishikawa, A. and Kawata, S., Appl. Phys. Lett. 88, 081107 (2006).Google Scholar
Xu, B., Zhang, R., Wang, H., Liu, X., Wang, L., Ma, Z., Chen, Q., Xiao, X., Han, B. and Sun, H., Nanoscale. 4, 6955 (2012).Google Scholar
Aminuzzaman, M., Watanabe, A. and Miyashita, T., Thin Solid Films. 517, 5935 (2009).Google Scholar
Cui, H., Liu, P. and Yang, G. W., Appl. Phys. Lett. 89, 153124 (2006).Google Scholar
Henley, S. J. and Silva, S. R. P., Appl. Phys. Lett. 91, 023107 (2007).Google Scholar
Bjerneld, E. J., Svedberg, F. and Käll, M., Nano Lett. 3, 593 (2003).Google Scholar
Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L. and Launois, H., Appl. Surf. Sci. 164, 111 (2000).Google Scholar
Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B. 105, 5599 (2001).Google Scholar
Salaita, K., Wang, Y. and Mirkin, C. A., Nat. Nanotechnol. 2, 145 (2007).Google Scholar
Haynes, C. L., McFarland, A. D. and Van Duyne, R. P., Anal. Chem. 77, 338A (2005).Google Scholar
Miller, M. B. and Bassler, B. L., Annu. Rev. Microbiol. 55, 165 (2001).Google Scholar
Carlier, A., Uroz, S., Smadja, B., Fray, R., Latour, X., Dessaux, Y., and Faure, D., Appl. Environ. Microbiol. Microbiol. 69, 4989 (2003).Google Scholar
Loh, J., Pierson, E. A., Pierson, L. S., Stacey, G., and Chatterjee, A., Curr. Opin. Plant Biol. 5, 1 (2002).Google Scholar
Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L., Cell 118, 69 (2004).Google Scholar
de Kievit, T. R. and Iglewski, B. H., Infect. Immun. 68, 4839 (2000).Google Scholar
Charlton, T. S., Nys, R. d., Netting, A., Kumar, N., Hentzer, M., Glvskov, M., and Kjelleberg, S., Environ. Microbiol. 2, 530 (2000).Google Scholar
Ravn, L., Christensen, A. B., Molin, S., Givskov, M., and Gram, L., J. Microbiol. Methods. 44, 239 (2001).Google Scholar
Anderson, J. B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B. B., Molin, S., and Givskov, M., Appl. Environ. Microbiol. 67, 575 (2001).Google Scholar
Pearman, W. F., Lawrence-Snyder, M., Angel, S. M. and Decho, A. W., Appl. Spectroscopy. 61, 1295 (2007).Google Scholar
Claussen, A., Abdali, S., Berg, R. W., Givskov, M. and Sams, T., Curr. Phys. Chem. 3, 199 (2013).Google Scholar
Jiang, K., Spendier, K. and Pinchuk, A. O., Proc. of SPIE. 9163, 916314–1 (2014).Google Scholar
Bryche, J-F., Gillibert, R., Barbillon, G., Gogol, P., Moreau, J., de la Chapelle, M. L., Bartenlian, B. and Canva, M., Plasmonics. 11, 601 (2016).Google Scholar
Fontana, J., Livenere, J., Bezares, F. J., Caldwell, J. D., Rendell, R. and Ratna, B. R., Appl. Phys. Lett. 102, 201606 (2013).Google Scholar
Caldwell, J. D., Glembocki, O., Bezares, F. J., Bassim, N. D., Rendell, R. W., Feygelson, M., Ukaegbu, M., Kasica, R., Shirey, L. and Hosten, C., ACS Nano. 5, 4046 (2011).Google Scholar
Bryche, J-F., Gillibert, R., Barbillon, G., Sarkar, M., Coutrot, A-L., Hamouda, F., Aassime, A., Moreau, J., de la Chapelle, M. L., Bartenlian, B. and Canva, M., J. Mater. Sci. 50, 6601 (2015).Google Scholar
Gui, J. Y., Stern, D. A., Frank, D. G., Lu, F., Zapien, D. C. and Hubbard, A. T., Langmuir. 7, 955 (1991).Google Scholar
Guo, Y., Oo, M. K. K., Reddy, K. and Fan, X., ACS Nano. 6, 381 (2012).Google Scholar