Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T02:33:54.485Z Has data issue: false hasContentIssue false

Large-Scale Synthesis of Nickel Sulfide for Electronic Device Applications

Published online by Cambridge University Press:  04 September 2020

Nidhi
Affiliation:
Department of Physics, Indian Institute of Technology, Roorkee
Tashi Nautiyal
Affiliation:
Department of Physics, Indian Institute of Technology, Roorkee
Samaresh Das*
Affiliation:
Center for Applied Research in Electronics, Indian Institute of Technology Delhi, Delhi, India
Get access

Abstract

Several techniques have been employed for large-scale synthesis of group 10 transition metal dichalcogenides (TMDCs) based on platinum and palladium for nano- and opto-electronic device applications. Nickel Sulphides (NixSy), belonging to group 10 TMDC family, have been widely explored in the field of energy storage devices such as batteries and supercapacitors, etc. and commonly synthesized through the solution process or hydrothermal methods. However, the high-quality thin film growth of NixSy for nanoelectronic applications remains a central challenge. Here, we report the chemical vapor deposition (CVD) growth of NiS2 thin film onto a two-inch SiO2/Si substrate, for the first time. Techniques such as X-ray photoelectron spectroscopy, X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, have been used to analyse the quality of this CVD grown NiS2 thin film. A high-quality crystalline thin film of thickness up to a few nanometres (~28 nm) of NiS2 has been analysed here. We also fabricated a field-effect device based on NiS2 thin film using interdigitated electrodes by optical lithography. The electrical performance of the fabricated device is characterized at room temperature. On applying the drain voltage from -2 to +2 V, the device shows drain current in the range of 10-9 A before annealing and in the range of 10-6 A after annealing. This, being comparable to that from devices based on MoS2 and other two-dimensional materials, projects CVD grown NiS2 as a good alternative material for nanoelectronic devices.

Type
Articles
Copyright
Copyright © Authors(s), 2020. Published by Cambridge University Press on behalf of Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147150, 2011, doi: 10.1038/nnano.2010.279.CrossRefGoogle ScholarPubMed
Splendiani, A. et al. , “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 12711275, 2010, doi: 10.1021/nl903868w.CrossRefGoogle ScholarPubMed
Mahatha, S. K., Patel, K. D., and Menon, K. S. R., “Electronic structure investigation of MoS 2 and MoSe 2 using angle-resolved photoemission spectroscopy and abinitio band structure studies,” J. Phys. Condens. Matter, vol. 24, no. 47, 2012, doi: 10.1088/0953-8984/24/47/475504.CrossRefGoogle Scholar
Sik Hwang, W. et al. , “Transistors with chemically synthesized layered semiconductor WS 2 exhibiting 10 5 room temperature modulation and ambipolar behavior,” Appl. Phys. Lett., vol. 101, no. 1, 2012, doi: 10.1063/1.4732522.CrossRefGoogle Scholar
Vogt, P. et al. , “Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon,” Phys. Rev. Lett., vol. 108, no. 15, pp. 15, 2012, doi: 10.1103/PhysRevLett.108.155501.CrossRefGoogle ScholarPubMed
Pakdel, A., Zhi, C., Bando, Y., and Golberg, D., “Low-dimensional boron nitride nanomaterials,” Mater. Today, vol. 15, no. 6, pp. 256265, 2012, doi: 10.1016/S1369-7021(12)70116-5.CrossRefGoogle Scholar
Ni, Z. et al. , “Tunable bandgap in silicene and germanene,” Nano Lett., vol. 12, no. 1, pp. 113118, 2012, doi: 10.1021/nl203065e.CrossRefGoogle ScholarPubMed
Song, L. et al. , “Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 7, pp. 112, 2012, doi: 10.1103/PhysRevB.86.075429.CrossRefGoogle Scholar
Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., and Lee, Y. H., “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today, vol. 20, no. 3, pp. 116130, 2017, doi: 10.1016/j.mattod.2016.10.002.CrossRefGoogle Scholar
Bao, W., Cai, X., Kim, D., Sridhara, K., and Fuhrer, M. S., “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett., vol. 102, no. 4, 2013, doi: 10.1063/1.4789365.CrossRefGoogle Scholar
Frey, G. and Elani, S., “Optical-absorption spectra of inorganic fullerenelike W),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 57, no. 11, pp. 66666671, 1998, doi: 10.1103/PhysRevB.57.6666.CrossRefGoogle Scholar
Islam, M. R. et al. , “Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma,” Nanoscale, vol. 6, no. 17, pp. 1003310039, 2014, doi: 10.1039/c4nr02142h.CrossRefGoogle ScholarPubMed
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 25, 2010, doi: 10.1103/PhysRevLett.105.136805.CrossRefGoogle Scholar
Choudhary, N., Islam, M. R., Kang, N., Tetard, L., Jung, Y., and Khondaker, S. I., “Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma,” J. Phys. Condens. Matter, vol. 28, no. 36, p. 364002, 2016, doi: 10.1088/0953-8984/28/36/364002.CrossRefGoogle ScholarPubMed
Magda, G. Z., Petõ, J., Dobrik, G., Hwang, C., Biró, L. P., and Tapasztó, L., “Exfoliation of large-area transition metal chalcogenide single layers,” Sci. Rep., vol. 5, pp. 37, 2015, doi: 10.1038/srep14714.CrossRefGoogle ScholarPubMed
Hong, X. et al. , “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol., vol. 9, no. 9, pp. 682686, 2014, doi: 10.1038/nnano.2014.167.CrossRefGoogle Scholar
Nie, Y. et al. , “Preparation of 3D spherical Ni/Al LDHs with significantly enhanced electrochemical performance as a superior cathode material for Ni/MH batteries,” Electrochim. Acta, vol. 289, pp. 333341, 2018, doi: 10.1016/j.electacta.2018.09.043.CrossRefGoogle Scholar
Shang, Y. et al. , “The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy in acidic and alkali corrosive environments,” Int. J. Precis. Eng. Manuf., vol. 18, no. 1, pp. 9398, 2017, doi: 10.1007/s12541-017-0011-x.CrossRefGoogle Scholar
Zhang, J. et al. , “ Facile Synthesis of a Nickel Sulfide (NiS) Hierarchical Flower for the Electrochemical Oxidation of H 2 O 2 and the Methanol Oxidation Reaction (MOR) ,” J. Electrochem. Soc., vol. 164, no. 4, pp. B92B96, 2017, doi: 10.1149/2.0221704jes.CrossRefGoogle Scholar
Zhang, L., Yu, J. C., Mo, M., Wu, L., Li, Q., and Kwong, K. W., “A general solution-phase approach to oriented nanostructured films of metal chalcogenides on metal foils: The case of nickel sulfide,” J. Am. Chem. Soc., vol. 126, no. 26, pp. 81168117, 2004, doi: 10.1021/ja0484505.CrossRefGoogle ScholarPubMed
Cai, F., Sun, R., Kang, Y., Chen, H., Chen, M., and Li, Q., “One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors,” RSC Adv., vol. 5, no. 29, pp. 2307323079, 2015, doi: 10.1039/c5ra02058a.CrossRefGoogle Scholar
Zhu, T., Bin Wu, H., Wang, Y., Xu, R., and Lou, X. W., “Formation of 1D hierarchical structures composed of Ni3S 2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production,” Adv. Energy Mater., vol. 2, no. 12, pp. 14971502, 2012, doi: 10.1002/aenm.201200269.CrossRefGoogle Scholar
Yang, J., Duan, X., Qin, Q., and Zheng, W., “Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors,” J. Mater. Chem. A, vol. 1, no. 27, pp. 78807884, 2013, doi: 10.1039/c3ta11167a.CrossRefGoogle Scholar
Yang, X. et al. , “Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents,” J. Mater. Res., vol. 29, no. 8, pp. 935941, 2014, doi: 10.1557/jmr.2014.74.CrossRefGoogle Scholar
Zhao, W. et al. , “Oriented single-crystalline nickel sulfide nanorod arrays: ‘Two-in-one’ counter electrodes for dye-sensitized solar cells,” J. Mater. Chem. A, vol. 1, no. 2, pp. 194198, 2013, doi: 10.1039/c2ta00416j.CrossRefGoogle Scholar
Lu, Y., Li, X., Liang, J., Hu, L., Zhu, Y., and Qian, Y., “A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries,” Nanoscale, vol. 8, no. 40, pp. 1761617622, 2016, doi: 10.1039/c6nr05626a.CrossRefGoogle ScholarPubMed
Jiang, N., Tang, Q., Sheng, M., You, B., Jiang, D. E., and Sun, Y., “Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles,” Catal. Sci. Technol., vol. 6, no. 4, pp. 10771084, 2016, doi: 10.1039/c5cy01111f.CrossRefGoogle Scholar
Yu, S. H. and Yoshimura, M., “Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes,” Adv. Funct. Mater., vol. 12, no. 4, pp. 277285, 2002, doi: 10.1002/1616-3028(20020418)12:4<277::AID-ADFM277>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle Scholar
Shen, G., Chen, D., Tang, K., An, C., Yang, Q., and Qian, Y., “Phase-controlled synthesis and characterization of nickel sulfides nanorods,” J. Solid State Chem., vol. 173, no. 1, pp. 227231, 2003, doi: 10.1016/S0022-4596(03)00030-6.CrossRefGoogle Scholar