Published online by Cambridge University Press: 20 May 2016
We have synthesized and investigated electronic properties of several non-centrosymmetric actinide compounds, which do not have an inversion center in the crystal structure “globally” or “locally”, under high pressure. The Néel temperature of an antiferromagnet UIrSi3 with “globally” non-centrosymmetric structure increases with increasing pressure at a rate of 2.5 K/GPa up to 5 GPa. On the other hand, T Ns of U2Rh3Si5 and U2Ir3Si5, which are “locally” non-centrosymmetric compounds, decrease with -1 K/GPa and -0.5 K/GPa with increasing pressure, respectively. Here, U2Ir3Si5 is a new antiferromagnet crystallizing in the U2Co3Si5-type of orthorhombic structure. Below T N = 36.5 K, U2Ir3Si5 shows magnetic order-order transition at T 0 = 26.1 K with a first-order nature. Electrical resistivity in U2Ir3Si5 shows semiconducting-like behavior due to the formation of the super-zone gap in the antiferromagnetic state. T N and T 0 as well as semi-conducting-like behavior in resistivity are suppressed by external pressure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.