Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T23:52:30.389Z Has data issue: false hasContentIssue false

Instant release fractions for 14C, 60Co, and 125Sb from irradiated Zircaloy oxide film

Published online by Cambridge University Press:  27 December 2019

Tomofumi Sakuragi*
Affiliation:
Radioactive Waste Management Funding and Research Center, Akashicho 6-4, Chuo city, Tokyo, 104-0044, Japan
Yu Yamashita
Affiliation:
Toshiba Energy Systems & Solutions Corporation, Ukishimacho 4-1, Kawasaki-ku, Kawasaki city, 210-0862, Japan
Get access

Abstract

The oxide films formed on spent fuel claddings are regarded as a potential source of the instantaneous release of radionuclides, such as 14C, after waste disposal. We investigated the instant release fraction using the irradiated oxide exfoliated from a Zircaloy-2 water rod, whose bundle burnup was 53.0 GWd/MTU. We performed a rapid leaching test in a dilute NaOH solution (pH of 12.5) for 10 min in an ultrasonic bath to ensure the release of radionuclides. The activity ratios of the leached amount to the total amount for 14C, 60Co, and 125Sb were extremely low at approximately 10-4 to 10-3, among which the maximum value was 2.65 × 10-3 for 125Sb. These ratios were higher than that predicted from the thermodynamic solubility of ZrO2, i.e., less than 10-6. However, given the low ratios, it is too conservative to regard the inventory of all radionuclides in the Zircaloy oxide as instantaneous release. A small part of the released 14C was found as volatile species.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Federation of Electric Power Companies (FEPC) and Japan Atomic Energy Agency (JAEA). Second progress report on research and development for TRU waste disposal in Japan (2007).Google Scholar
The Nuclear Waste Management Organization of Japan (NUMO), NUMO Safety Case, NUMO-TR-18-03 (2018). (in Japanese)Google Scholar
Yamaguchi, T., Tanuma, S., Yasutomi, I., Nakayama, T., Tanabe, H., Katsurai, K., Kawamura, W., and Maeda, K., Proc. ASME 7th International Conference on Environmental Remediation and Radioactive Waste Management, Sep. 26-30, Nagoya, Japan (1999).Google Scholar
Guenther, R. J., Blahnik, D. E., Thomas, L. E., Baldwin, D. L., and Mendel, J. E., Proc. Spectrum 90 Conference, Sept. 30-Oct. 3, Knoxville, TN (1990).Google Scholar
Sakuragi, T., Tanabe, H., Hirose, E., Sakashita, A. and Nishimura, T., Proc. ASME 15th International Conference on Environmental Remediation and Radioactive Waste Management, Sep. 8-12, Brussels, Belgium (2013).Google Scholar
Sakuragi, T., Yamashita, Y., Akagi, M. and Takahashi, R., Procedia Chem 21, 341-348 (2016).10.1016/j.proche.2016.10.048CrossRefGoogle Scholar
Japan Nuclear Energy Safety Organization (JNES), Verification Program of BWR 9×9 Fuel (2007) (in Japanese).Google Scholar
Yamashita, Y., Tanabe, H., Sakuragi, T., Takahashi, R., and Sasoh, M., Mater Res Soc Symp Proc 1665, 187-194 (2014).10.1557/opl.2014.645CrossRefGoogle Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-105. PNL-5109-105, Pacific Northwest Laboratory, Richland, WA (1991).Google Scholar
Barner, J. O., ATM-101. PNL-5109 Rev.1, Pacific Northwest Laboratories, Richland, WA (1985).Google Scholar
Wilson, C. N., HEDL-TME 85-22, Westinghouse Hanford Company, Richland, WA (1987).Google Scholar
Van Konynenburg, R. A., Smith, C. F., Culham, H. W., and Smith, H. D., Mater Res Soc Symp Proc 84, 185-196 (1987).10.1557/PROC-84-185CrossRefGoogle Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-103. PNL-5109-103, Pacific Northwest Laboratory, Richland, WA (1988).Google Scholar
Guenther, R. J., Blahnik, D. E., Jenquin, U. P., Mendel, J. E., Thomas, L. E., and Thornhill, C. K., ATM-104. PNL-5109-104, Pacific Northwest Laboratory, Richland, WA (1991).Google Scholar
Guenther, R. J., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, J. E., and Thornhill, C. K., ATM-106. PNL-5109-106, Pacific Northwest Laboratory, Richland, WA (1988).Google Scholar
Bleier, A., Neeb, K. H., Kroebel, R., and Wiese, H. W., Proc. International Conference on Nuclear Fuel Reprocessing and Waste Management, Aug. 23-27, Paris, France (1987).Google Scholar
Herm, M., Dagan, R., González-Robles, E., Müller, N., and Metz, V., MRS Adv 3, 1031-1037 (2018).10.1557/adv.2018.274CrossRefGoogle Scholar
Bucur, C., Fulger, M., Florea, I., and Tudose, A., Radiocarbon 60, 1773-1786 (2018).10.1017/RDC.2018.132CrossRefGoogle Scholar
Ekberg, C., Kallvenius, G., Albinsson, Y., and Brown, P. L., J Solution Chem 33, 47-79 (2004).10.1023/B:JOSL.0000026645.41309.d3CrossRefGoogle Scholar
Brown, P. L., Curti, E., Grambow, B., and Ekberg, C., “Chemical Thermodynamics of Zirconium”, Chemical Thermodynamics vol.8, ed. et al. (Elsevier, 2005).Google Scholar
Kobayashi, T., Sasaki, T., Takagi, I., and Moriyama, H., J Nucl Sci Technol 44, 90 (2007).10.1080/18811248.2007.9711260CrossRefGoogle Scholar
Rai, D., Kitamura, A., Altmaier, M., Rosso, K. M., Sasaki, T., and Kobayashi, T., J Solution Chem 47, 855-891 (2018).10.1007/s10953-018-0766-4CrossRefGoogle Scholar