Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T07:47:59.908Z Has data issue: false hasContentIssue false

Influence of microwave photo-excitation on the transport properties of the high mobility GaAs/AlGaAs 2D electron system

Published online by Cambridge University Press:  21 January 2020

T. R. Nanayakkara
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
R. L. Samaraweera
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
A. Kriisa
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
U. Kushan Wijewardena
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
S. Withanage
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
C. Reichl
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
W. Wegscheider
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
R. G. Mani*
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
*
*Corresponding author: rmani@gsu.edu
Get access

Abstract

We examined the influence of the microwave power on the diagonal resistance in the GaAs/AlGaAs two dimensional electron system (2DES), in order to extract the electron temperature and determine microwave induced heating as a function of the microwave power. The study shows that microwaves produce a small discernable increase in the electron temperature both at null magnetic field and at finite magnetic fields in the GaAs/AlGaAs 2DES. The heating effect at null field appears greater in comparison to the examined finite field interval, although the increase in the electron temperature in the zero-field limit appears smaller than theoretical predictions.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V., Johnson, W. B., and Umansky, V., Nature (London) 420, 646 (2002), Phys. Rev. B 69, 193304 (2004); Phys. Rev. Lett. 92, 146801 (2004).Google Scholar
Zudov, M. A., Du, R. R., Pfeiffer, L. N., and West, K.W., Phys. Rev. Lett. 90, 046807 (2003).CrossRefGoogle Scholar
Mani, R. G., Narayanamurti, V., von Klitzing, K., Smet, J. H., Johnson, W. B., and Umansky, V., Phys. Rev. B 70, 155310 (2004); Phys. Rev. B. 69, 161306 (2004).CrossRefGoogle Scholar
Kovalev, A. E., Zvyagin, S. A., Bowers, C. R., Reno, J. L., and Simmons, J. A., Solid State Commun. 130, 379 (2004).CrossRefGoogle Scholar
Simovic, B., Ellenberger, C., Ensslin, K., Tranitz, H. P., Wegscheider, andW., Phys. Rev. B 71, 233303 (2005).CrossRefGoogle Scholar
Mani, R. G., Physica E 22, 1 (2004); Physica E 25, 189 (2004); Physica E 40, 1178 (2008); Phys. Rev. B 72, 075327 (2005); Appl. Phys. Lett. 92 102107 (2008); Int. J. Mod. Phys. B 18, 3473 (2007); Appl. Phys. Lett. 91, 132103 (2007); Sol. St. Comm. 144, 409 (2007).Google Scholar
Ramanayaka, A. N., et al., Phys. Rev. B 83, 165303 (2011); Phys. Rev. B 85, 205315 (2012).CrossRefGoogle Scholar
Mani, R. G. et al., Sci. Rep. 3, 3478 (2013) DOI:10.1038/srep03478; Sci. Rep. 3, 2747 (2013); DOI:10.1038/srep02747; Phys. Rev. B 81, 125320 (2010); Phys. Rev. B 37, 4299 (R), (1988); Z. Phys. B 92 335 (1993); Phys. Rev. B 84, 085308 (2011).CrossRefGoogle Scholar
Wang, Z., et al., Sci. Rep. 6, 38516; (2016).CrossRefGoogle Scholar
Samaraweera, R.L., et al., Sci. Rep. 7, 5074 (2017).CrossRefGoogle Scholar
Liu, H.-C., et al. , J. Appl. Phys. 117, 064306 (2015); Sci. Rep. 8, 7878 (2018) - DOI: 10.1038/s41598-018-26009-zGoogle Scholar
Munasinghe, C. R., et al., J. Phys.: Condens. Matter 30 315701(2018).Google Scholar
Iñarrea, J. and Platero, G., Appl. Phys. Lett. 89, 172114 (2006).CrossRefGoogle Scholar
Iñarrea, J., Mani, R. G., and Wegscheider, W., Phys. Rev. B 82, 205321 (2010).CrossRefGoogle Scholar
Ye, T. et al., Appl. Phys. Lett. 103, 192106 (2013); 102, 242113 (2013).CrossRefGoogle Scholar
Ye, T., et al., Phys. Rev. B 89, 155307 (2014); Appl. Phys. Lett. 105, 191609 (2014); Sci.Rep.5, 14880 (2015).CrossRefGoogle Scholar
Iñarrea, J., J. Appl. Phys. 113, 183717 (2013).CrossRefGoogle Scholar
Zudov, M. A., Du, R. R., Pfeiffer, L. N., and West, K.W., Phys. Rev. Lett. 96, 236804 (2006).CrossRefGoogle Scholar
Gunawardana, B., et al., Phys. Rev. B 95, 195304 (2017).CrossRefGoogle Scholar
Lei, X. L. and Liu, S. Y., Appl. Phys. Lett. 89, 182117 (2006).CrossRefGoogle Scholar
Durst, A. C., Sachdev, S., Read, N., and Girvin, S. M., Phys. Rev. Lett. 91, 086803 (2003).CrossRefGoogle Scholar
Iñarrea, J. and Platero, G., Phys. Rev. Lett. 94, 016806 (2005).CrossRefGoogle Scholar
Dmitrievet, I. A. et al., Phys. Rev. B 71, 115316 (2005).CrossRefGoogle Scholar
Beltukov, Y. M. and Dyakonov, M. I., Phys. Rev. Lett. 116, 176801 (2016).CrossRefGoogle Scholar
Zhirov, O. V., Chepelianskii, A. D., and Shepelyansky, D. L., Phys. Rev. B 88, 035410, (2013).CrossRefGoogle Scholar
Lei, X. L. and Liu, S. Y., Phys. Rev. B 72, 075345 (2005); Phys. Rev. B 86, 205303 (2012).CrossRefGoogle Scholar
Lei, X. L., Materials Science and Engineering: R: Reports (Amsterdam) 70, 126-150 (2010). DOI- 10.1016/j.mser.2010.06.006.CrossRefGoogle Scholar
Chepelianskii, A. D., et al., Eur. Phys. J. B 60, 225-229 (2007); Phys. Rev. B 80, 241308(R) (2009)CrossRefGoogle Scholar
Lifshitz, L. M. and Kosevich, A. M., J. Phys. Chem. Solids 4, 1 (1958) [Sov. Phys. JETP 4, 173 (1958)].CrossRefGoogle Scholar