Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:27:00.710Z Has data issue: false hasContentIssue false

Improving the Time Stability of Superconducting Planar Resonators

Published online by Cambridge University Press:  10 June 2019

M.S. Moeed
Affiliation:
Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
C.T. Earnest
Affiliation:
Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
J.H. Béjanin
Affiliation:
Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
A.S. Sharafeldin
Affiliation:
Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
M. Mariantoni*
Affiliation:
Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Get access

Abstract

Quantum computers are close to become a practical technology. Solid-state implementations based, for example, on superconducting devices strongly rely on the quality of the constituent materials. In this work, we fabricate and characterize superconducting planar resonators in the microwave range, made from aluminum films on silicon substrates. We study two samples, one of which is unprocessed and the other cleaned with a hydrofluoric acid bath and by heating at 880 °C in high vacuum. We verify the efficacy of the cleaning treatment by means of scanning transmission electron microscope imaging of samples’ cross sections. From 3 h-long resonator measurements at ≈ 10 mK and with ≈ 10 photonic excitations, we estimate the frequency flicker noise level using the Allan deviation and find an approximately tenfold noise reduction between the two samples; the cleaned sample shows a flicker noise power coefficient for the fractional frequency of ≈ 0.23 × 10−15. Our preliminary results follow the generalized tunneling model for two-level state defects in amorphous dielectric materials and show that suitable cleaning treatments can help the operation of superconducting quantum computers.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Montanaro, A., “Quantum Algorithms: An Overview,” npj Quantum Information , vol. 2, p. 15023, 2016.CrossRefGoogle Scholar
Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., and O’Brien, J. L., “Quantum Computers,” Nature , vol. 464, no. 7285, pp. 45-53, 2010.CrossRefGoogle ScholarPubMed
Clarke, J. and Wilhelm, F. K., “Superconducting Quantum Bits,” Nature , vol. 453, no. 7198, pp. 1031-1042, 2008.CrossRefGoogle ScholarPubMed
Fowler, A. G., Mariantoni, M., Martinis, J. M., and Cleland, A. N., “Surface Codes: Towards Practical Large-Scale Quantum Computation,” Phys. Rev. A , vol. 86, no. 3, p. 032324, 2012.CrossRefGoogle Scholar
Müller, C., Lisenfeld, J., Shnirman, A., and Poletto, S., “Interacting Two-Level Defects as Sources of Fluctuating High-Frequency Noise in Superconducting Circuits,” Phys. Rev. B , vol. 92, p. 035442, 2015.CrossRefGoogle Scholar
Klimov, P. V., Kelly, J., Chen, Z., Neeley, M., Megrant, A., Burkett, B., Barends, R., Arya, K., Chiaro, B., Chen, Y., Dunsworth, A., Fowler, A., Foxen, B., Gidney, C., Giustina, M., Graff, R., Huang, T., Jeffrey, E., Lucero, E., Mutus, J. Y., Naaman, O., Neill, C., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Boixo, S., Babbush, R., Smelyanskiy, V. N., Neven, H., and Martinis, J. M., “Fluctuations of Energy-Relaxation Times in Superconducting Qubits,Phys. Rev. Lett. , vol. 121, p. 090502, 2018.CrossRefGoogle Scholar
Burnett, J., Bengtsson, A., Scigliuzzo, M., Niepce, D., Kudra, M., Delsing, P., and Bylander, J., “Decoherence Benchmarking of Superconducting Qubits,” arXiv:1901.04417, 2019.Google Scholar
Schlör, S., Lisenfeld, J., Müller, C., Schneider, A., Pappas, D. P., Ustinov, A. V., and Weides, M., “Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators,” arXiv:1901.05352, 2019.Google Scholar
Müller, C., Cole, J. H., and Lisenfeld, J., “Towards Understanding Two-Level-Systems in Amorphous Solids - Insights from Quantum Devices,” arXiv:1705.01108, 2017.Google Scholar
Collin, R. E., Foundations for Microwave Engineering - 2nd Edition, New York, NY, and Hoboken, NJ, USA: Institute of Electrical & Electronics Engineers (IEEE), Inc., and John Wiley & Sons, Inc., 2001.Google Scholar
Earnest, C. T., Béjanin, J. H., McConkey, T. G., Peters, E. A., Korinek, A., Yuan, H., and Mariantoni, M., “Substrate Surface Engineering for High-Quality Silicon/Aluminum Superconducting Resonators,” Superconductor Science and Technology , vol. 31, no. 12, p. 125013, 2018.CrossRefGoogle Scholar
Wisbey, D. S., Gao, J., Vissers, M. R., da Silva, F. C. S., Kline, J. S., Vale, L., and Pappas, D. P., “Effect of Metal/Substrate Interfaces on Radio-Frequency Loss in Superconducting Coplanar Waveguides,” Journal of Applied Physics , vol. 108, no. 9, p. 093918, 2010.CrossRefGoogle Scholar
Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P. J. J., Sank, D., Vainsencher, A., Wenner, J., White, T. C., Yin, Y., Zhao, J., Palmstrøm, C. J., Martinis, J. M., and Cleland, A. N., “Planar Superconducting Resonators with Internal Quality Factors Above One Million,” Appl. Phys. Lett. , vol. 100, no. 11, p. 113510, 2012.CrossRefGoogle Scholar
Richardson, C. J. K., Siwak, N. P., Hackley, J., Keane, Z. K., Robinson, J. E., Arey, B., Arslan, I., and Palmer, B. S., “Fabrication Artifacts and Parallel Loss Channels in Metamorphic Epitaxial Aluminum Superconducting Resonators,” Superconductor Science and Technology , vol. 29, no. 6, p. 064003, 2016.CrossRefGoogle Scholar
Burnett, J., Bengtsson, A., Niepce, D., and Bylander, J., “Noise and Loss of Superconducting Aluminium Resonators at Single Photon Energies,” Journal of Physics: Conference Series , vol. 969, no. 1, p. 012131, 2018.Google Scholar
Barnes, J. A., Chi, A. R., Cutler, L. S., Healey, D. J., Leeson, D. B., McGunigal, T. E., Mullen, J. A., Smith, W. L., Sydnor, R. L., Vessot, R. F. C., and Winkler, G. M. R., “Characterization of Frequency Stability,” IEEE Transactions on Instrumentation and Measurement, vols. IM-20, no. 2, pp. 105-120, 1971.CrossRefGoogle Scholar
de Graaf, S. E., Faoro, L., Burnett, J., Adamyan, A. A., Tzalenchuk, A. Y., Kubatkin, S. E., Lindström, T., and Danilov, A. V., “Suppression of Low-Frequency Charge Noise in Superconducting Resonators by Surface Spin Desorption,” Nature Communications , vol. 9, no. 1, 2018.CrossRefGoogle ScholarPubMed
Béjanin, J. H., McConkey, T. G., Rinehart, J. R., Earnest, C. T., McRae, C. R. H., Shiri, D., Bateman, J. D., Rohanizadegan, Y., Penava, B., Breul, P., Royak, S., Zapatka, M., Fowler, A. G., and Mariantoni, M., “Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket,” Phys. Rev. Applied , vol. 6, p. 044010, 2016.CrossRefGoogle Scholar
Calusine, G., Melville, A., Woods, W., Das, R., Stull, C., Bolkhovsky, V., Braje, D., Hover, D., Kim, D. K., Miloshi, X., Rosenberg, D., Sevi, A., Yoder, J. L., Dauler, E., and Oliver, W. D., “Analysis and Mitigation of Interface Losses in Trenched Superconducting Coplanar Waveguide Resonators,” Applied Physics Letters , vol. 112, no. 6, p. 062601, 2018.CrossRefGoogle Scholar
Gao, J., Daal, M., Martinis, J. M., Vayonakis, A., Zmuidzinas, J., Sadoulet, B., Mazin, B. A., Day, P. K., and Leduc, H. G., “A Semiempirical Model for Two-Level System Noise in Superconducting Microresonators,” Applied Physics Letters , vol. 92, no. 21, p. 212504, 2008.CrossRefGoogle Scholar
Pappas, D. P., Vissers, M. R., Wisbey, D. S., Kline, J. S., and Gao, J., “Two Level System Loss in Superconducting Microwave Resonators,” IEEE Transactions on Applied Superconductivity , vol. 21, no. 3, pp. 871-874, 2011.CrossRefGoogle Scholar
McConkey, T. G., Béjanin, J. H., Earnest, C. T., McRae, C. R. H., Pagel, Z., Rinehart, J. R., and Mariantoni, M., “Mitigating Leakage Errors due to Cavity Modes in a Superconducting Quantum Computer,” Quantum Science and Technology , vol. 3, no. 3, p. 034004, 2018.CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L. A., Kamino, T., and Michael, J., “TEM Sample Preparation and FIB-Induced Damage,” MRS Bulletin , vol. 32, no. 5, pp. 400407, 2007.CrossRefGoogle Scholar
Liu, X.-Y., Arslan, I., Arey, B. W., Hackley, J., Lordi, V., and Richardson, C. J. K., “Perfect Strain Relaxation in Metamorphic Epitaxial Aluminum on Silicon through Primary and Secondary Interface Misfit Dislocation Arrays,” ACS Nano , vol. 12, no. 7, pp. 6843-6850, 2018.CrossRefGoogle ScholarPubMed
Riley, W. J., Handbook of frequency stability analysis, National Institute of Standards and Technology, 2008.CrossRefGoogle Scholar
Lindström, T., Burnett, J., Oxborrow, M., and Tzalenchuk, A. Y., “Pound-Locking for Characterization of Superconducting Microresonators,” Review of Scientific Instruments , vol. 82, no. 10, p. 104706, 2011.CrossRefGoogle ScholarPubMed
Proakis, J. and Manolakis, D. K., Digital Signal Processing: Principles, Algorithms, and Applications - 4th Edition, London, UK: Pearson plc., 2007.Google Scholar
Anderson, P. W., Halperin, B. I., and Varma, C. M., “Anomalous Low-Temperature Thermal Properties of Glasses and Spin Glasses,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics , vol. 25, no. 1, pp. 1-9, 1972.CrossRefGoogle Scholar
Phillips, W. A., Amorphous Solids: Low-Temperature Properties - edited by Phillips, W. A.; with contributions by A. C. Anderson, Springer-Verlag Berlin; New York, 1981.Google Scholar
Phillips, W. A., “Two-Level States in Glasses,” Reports on Progress in Physics , vol. 50, no. 12, p. 1657, 1987.CrossRefGoogle Scholar
Black, E. D., “An Introduction to Pound–Drever–Hall Laser Frequency Stabilization,” American Journal of Physics , vol. 69, no. 1, pp. 79-87, 2001.CrossRefGoogle Scholar