Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T13:49:40.207Z Has data issue: false hasContentIssue false

Improved cyclability of Nickel-rich layered oxides

Published online by Cambridge University Press:  04 February 2020

Nils P. Wagner*
Affiliation:
Department of Sustainable Energy Technology, SINTEF Industry, 7491 Trondheim, Norway Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Julian R. Tolchard
Affiliation:
Department of Sustainable Energy Technology, SINTEF Industry, 7491 Trondheim, Norway
Artur Tron
Affiliation:
Department of Sustainable Energy Technology, SINTEF Industry, 7491 Trondheim, Norway
Harald N. Pollen
Affiliation:
Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Heiko Gaertner
Affiliation:
Department of Sustainable Energy Technology, SINTEF Industry, 7491 Trondheim, Norway
Per E. Vullum
Affiliation:
Department of Materials and Nanotechnology, SINTEF Industry, 7491 Trondheim, Norway Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
*
*Corresponding author: Nils Peter Wagner nils.peter.wagner@sintef.no

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study compares the physico- and electro- chemical properties of LiNi0.8Mn0.10Co0.1O2 (NMC811) and LiNi0.83Mn0.06Co0.09Al0.1O2 (NMCA) prepared by an oxalic acid co-precipitation. Deposition of a SiO2 surface coating was attempted via reaction of the powder with an amino silane prior to the final heat treatment. It was found that either the presence of small amounts of Al3+, or the compositional gradient resulting from a two step co-precipitation, caused increased crystal growth of the NMCA in comparison to NMC811. This led to improved cyclability in LP40 electrolyte. However, the SiO2 coating appeared incomplete and negatively impacted performance. Crystal cleavage preferably on the {001} planes was observed after 100 charge-discharge cycles, with consequent cathode electrolyte interphase formation in the crystal cracks. This is believed to cause capacity decay via lithium loss, and increased charge transfer resistance. An FEC based electrolyte improved the cyclability in all cases and even under extreme conditions (45°C and upper cycling potential of 4.5 V) NMCA showed a capacity retention of 85% after 100 cycles.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCSA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-ncsa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
Copyright © Materials Research Society 2020

References

REFERENCES

Schmuch, R., Wagner, R., Hörpel, G., Placke, T., Winter, M., Nat. Energy 3, 267278 (2018).CrossRefGoogle Scholar
Noh, H.J., Youn, S., Yoon, C.S., Sun, Y.K., J. Power Sources 233, 121130 (2013).CrossRefGoogle Scholar
Sun, Y.-K., Myung, S.-T., Park, B.-C., Prakash, J., Belharouak, I., Amine, K., Nat. Mater. 8, 320-324 (2009).10.1038/nmat2418CrossRefGoogle Scholar
Manthiram, A., Knight, J.C., Myung, S.-T., Oh, S.-M., Sun, Y.-K., Adv. Energy Mater. 6, 1501010 (2016).CrossRefGoogle Scholar
Hwang, S., Chang, W., Kim, S.M., Su, D., Kim, D.H., Lee, J.Y., Chung, K.Y., Stach, E.A., Chem. Mater. 26, 10841092 (2014).10.1021/cm403332sCrossRefGoogle Scholar
Lin, F., Markus, I. M., Nordlund, D., Weng, T-C., Asta, M. D., Xin, H. L., Doeff, M. M., Nat. Comm. 5, 3529 (2014).CrossRefGoogle Scholar
Lee, J.H., Yoon, C.S., Hwang, J.-Y., Kim, S.-J., Maglia, F., Lamp, P., Myung, S.-T., Sun, Y.-K., Energy Environ. Sci. 9, 2152-2158 (2016).10.1039/C6EE01134ACrossRefGoogle Scholar
Manthiram, A., Song, B., Li, W., Energy Storage Materials 6, 125-139 (2017).CrossRefGoogle Scholar
Kim, U-H., Kuo, LY., Kaghazchi, P., Yoon, C. S., and Su, Y-K., ACS Energy Lett. 4, 576582 (2019).10.1021/acsenergylett.8b02499CrossRefGoogle Scholar
Cormier, M., Zhang, N., Liu, A., Li, H., Inglis, J., Dahn, J.R., J. Electrochem. Soc. 166, A28262833 (2019).CrossRefGoogle Scholar
Ryu, H.H., Park, K.J., Yoon, C.S., Sun, Y.K., Chem Mater., 30, 11551163 (2018).10.1021/acs.chemmater.7b05269CrossRefGoogle Scholar
Li, H., Cormier, M., Zhang, N., Inglis, J., Li, J., Dahn, J. R., J. Electrochem. Soc. 166, A429-A439 (2019)CrossRefGoogle Scholar
Mohanty, D., Dahlberg, K., King, D.M., David, L.A., Sefat, A.S., Wood, D.L., Daniel, C., Dhar, S., Mahajan, V., Lee, M., Albano, F., Sci. Rep. 6, 26532 (2016).CrossRefGoogle Scholar
Zhu, W., Huang, X., Liu, T., Xie, Z., Wang, Y., Tian, K., Bu, L., Wang, H., Gao, L., Zhao, J., Coatings 9, 92 (2019).10.3390/coatings9020092CrossRefGoogle Scholar
Zhao, W., Zheng, G., Lin, M., Zhao, W., Li, D., Guan, X., Ji, Y., Ortiz, G.F., Yang, Y., J. Power Sources 380, 149-157 (2018).CrossRefGoogle Scholar
Cha, J., Han, J.-G., Hwang, J., Cho, J., Choi, N.-S., J. Power Sources 357, 97-106 (2017).CrossRefGoogle Scholar
Sun, Y.-K., Park, B.-C., Amine, K., Belharouak, I., Myung, S.-T., Prakash, J., Nat. Mater. 8, 320324 (2009).10.1038/nmat2418CrossRefGoogle Scholar
Li, H., Li, J., Ma, X., Dahn, J.R., J. Electrochem. Soc. 165 , A1038-A1045 (2018).10.1149/2.0951805jesCrossRefGoogle Scholar