Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:07:00.400Z Has data issue: false hasContentIssue false

Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties

Published online by Cambridge University Press:  13 June 2017

Md Nadim Ferdous Hoque
Affiliation:
Electrical & Computer Engineering, Texas Tech University, Lubbock, Texas, United States
Nazifah Islam
Affiliation:
Electrical & Computer Engineering, Texas Tech University, Lubbock, Texas, United States
Kai Zhu
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado, United States
Zhaoyang Fan*
Affiliation:
Electrical & Computer Engineering, Texas Tech University, Lubbock, Texas, United States
Get access

Abstract

Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ∼ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI3 thin film at ∼ 55 °C, but a striking contrast occurred at ∼ 45 °C in the ionic and electrical properties of MAPbI3 due to a change of the ion activation energy from 0.7 eV to 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, D., Liao, P., Shai, X., Huang, W., Liu, S., Li, H., Shen, Y. and Wang, M., RSC Adv. 6(92), 8935689366 (2016).Google Scholar
Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. and Herz, L. M., Adv. Funct. Mater. 25(39), 62186227 (2015).Google Scholar
Hata, T., Giorgi, G. and Yamashita, K., Nano Lett. 16(4), 27492753 (2016).CrossRefGoogle Scholar
Yang, T. Y., Gregori, G., Pellet, N., Grätzel, M. and Maier, J., Angew. Chem. 127(27), 80168021 (2015).CrossRefGoogle Scholar
Meloni, S., Moehl, T., Tress, W., Franckevičius, M., Saliba, M., Lee, Y. H., Gao, P., Nazeeruddin, M. K., Zakeeruddin, S. M. and Rothlisberger, U., Nat. Commun. 7, 10334 (2016).Google Scholar
Bag, M., Renna, L. A., Adhikari, R., Karak, S., Liu, F., Lahti, P. M., Russell, T. P., Tuominen, M. T. and Venkataraman, D., J. Am. Chem. Soc. 137(40), 1313013137 (2015).Google Scholar
Hoque, M. N. F., Yang, M., Li, Z., Islam, N., Pan, X., Zhu, K. and Fan, Z., ACS Energy Lett. 1(1), 142149 (2016).Google Scholar
Hoque, M. N. F., Islam, N., Li, Z., Ren, G., Zhu, K. and Fan, Z., ChemSusChem 9(18), 26922698 (2016).CrossRefGoogle Scholar
Yun, J. S., Ho-Baillie, A., Huang, S., Woo, S. H., Heo, Y., Seidel, J., Huang, F., Cheng, Y.-B. and Green, M. A., J. Phys. Chem. Lett. 6(5), 875880 (2015).Google Scholar
Shao, Y., Fang, Y., Li, T., Wang, Q., Dong, Q., Deng, Y., Yuan, Y., Wei, H., Wang, M. and Gruverman, A., Energy Environ. Sci. 9(5), 17521759 (2016).CrossRefGoogle Scholar
Islam, N., Yang, M., Zhu, K. and Fan, Z., J Mater. Chem. A 3(48), 2431524321 (2015).CrossRefGoogle Scholar
Jacobsson, T. J., Schwan, L. J., Ottosson, M., Hagfeldt, A. and Edvinsson, T., Inorg. Chem. 54(22), 1067810685 (2015).Google Scholar
Kawamura, Y., Mashiyama, H. and Hasebe, K., J. Phys. Soc. Jpn 71(7), 16941697 (2002).Google Scholar
Quarti, C., Mosconi, E., Ball, J. M., D’Innocenzo, V., Tao, C., Pathak, S., Snaith, H. J., Petrozza, A. and De Angelis, F., Energy Environ. Sci. 9(1), 155163 (2016).Google Scholar
Xing, J., Wang, Q., Dong, Q., Yuan, Y., Fang, Y. and Huang, J., Phys. Chem. Chem. Phys. 18(44), 3048430490 (2016).Google Scholar