Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T00:24:07.575Z Has data issue: false hasContentIssue false

Hardness of Pillared-Graphene Nanostructures via Indentation Simulation

Published online by Cambridge University Press:  20 December 2016

R. Sasaki
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
K. Shintani*
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

Pillared-graphene is one of nanocarbon hybrids. It consists of graphene sheets and carbon nanotubes (CNTs); the latter are bonded vertically to the former. In order to investigate the hardness of pillared-graphene, indentation simulations are performed using a molecular dynamics method. It is revealed that the hardness of pillared-graphene increases with increasing the diameter of the CNTs, whereas it decreases with increasing the distance between CNTs or temperature. Such tendencies can be understood by considering the deformations of graphene and CNTs individually.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kondo, D., Sato, S., and Awano, Y., Appl. Phys. Express 1, 074003 (2008).CrossRefGoogle Scholar
Paul, R. K., Ghazinejad, M., Penchev, M., Lin, J., Ozkan, M., and Ozkan, C. S., Small 20, 2309 (2010).Google Scholar
Dimitrakakis, G. K., Tylianakis, E., and Froudakis, G. E., Nano Lett. 8, 3166 (2008).Google Scholar
Hassani, A., Mosavian, M. T. H., Ahmadpour, A., and Farhadian, N., J. Chem. Phys. 142, 234704 (2015).CrossRefGoogle Scholar
Lei, G., Liu, C., Xie, H., and Liu, J., Chem. Phys. Lett. 616-617, 232–236 (2014).Google Scholar
Wesołowski, R. P. and Terzyk, A. P., Phys. Chem. Chem. Phys. 13, 17027 (2011).CrossRefGoogle Scholar
Wesołowski, R. P. and Terzyk, A. P., Phys. Chem. Chem. Phys. 18, 17018 (2016).Google Scholar
Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F., Adv. Mater. 22, 3723 (2010).CrossRefGoogle Scholar
Yuan, K., Xu, Y., Uihlein, J., Brunklaus, G., Shi, L., Heiderhoff, R., Que, M., Foster, M., Chassé, T., Pichler, T., Riedl, T., Chen, Y., and Scherf, U., Adv. Mater. 27, 6714 (2015).Google Scholar
Shi, J., Dong, Y., Fisher, T., and Ruan, X., J. Appl. Phys. 118, 044302 (2015).Google Scholar
Qin, M., Feng, Y., Ji, T., and Feng, W., Carbon 104, 157 (2016).Google Scholar
Wang, C.-H., Fang, T.-H., and Sun, W.-L., J. Phys. D: Appl. Phys. 47, 405302 (2014).Google Scholar
LAMMPS Molecular Dynamic Simulator. Available at: http://lammps.sandia.gov/ (accessed 14/11/2016).Google Scholar
Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992); 19, 4(2004).Google Scholar