Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T23:09:14.264Z Has data issue: false hasContentIssue false

Growth of halide perovskites thin films for thermoelectric applications

Published online by Cambridge University Press:  25 June 2019

Shrikant Saini*
Affiliation:
Department of Mechanical Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, Japan.
Ajay Kumar Baranwal
Affiliation:
i-Powered Energy System Research Center (iPRC), The University of Electro-Communications, Chofu Tokyo, Japan.
Tomohide Yabuki
Affiliation:
Department of Mechanical Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, Japan.
Shuzi Hayase
Affiliation:
i-Powered Energy System Research Center (iPRC), The University of Electro-Communications, Chofu Tokyo, Japan.
Koji Miyazaki
Affiliation:
Department of Mechanical Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, Japan.
Get access

Abstract

Thermoelectric materials can play an important role to develop a sustainable energy source for internet of things devices near room temperature. In this direction, it is important to have a thermoelectric material with high thermoelectric performance. Cesium tin triiodide (CsSnI3) single crystal perovskite has shown high value of Seebeck coefficient and ultra low thermal conductivity which are necessary conditions for high thermoelectric performance. Here, we report the thermoelectric response of CsSnI3 thin films. These films are prepared by cost effective wet spin coating process at different baking temperature. Films were characterized using X-ray diffraction and scanning electron microscopy. In our case, films baked at 130°C for 5 min have shown the best thermoelectric performance at room temperature with: Seebeck coefficient 115 μV/K and electrical conductivity 124 S/cm, thermal conductivity 0.36 W/m·K and figure of merit ZT of 0.137.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mi, X. Y., Yu, X., Yao, K. L., Huang, X., Yang, N., and Lu, J. T., Nano Lett. 15 (8), 5229 (2015).CrossRefGoogle Scholar
Kim, S. J., Hyung, J. W., and Byung, J. C., Energy & Environmental Science 7 (6), 1959 (2014).CrossRefGoogle Scholar
Ding, Z., Meng, A., Mo, S., Yu, X., Jin, Z., Liao, Y., Esfarjani, K., Lu, K., Shiomi, J. T., and Yang, N., J. Mater. Chem. A 7, 2114, (2019).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nat. Mater. 7, 2 (2008).CrossRefGoogle Scholar
Sootsman, J. R., Chung, D. Y., and Kanatzidis, M. G., Angew. Chem. 48 (46), 8616 (2009).CrossRefGoogle Scholar
Lee, W., Li, H., Wong, A. B., Zhang, D., Lai, M., Yu, Y., Kong, Q., Lin, E., Urban, J. J., Grossman, J. C. and Yang, P., Proc. Natl. Acad. Sci. 114 (33), 8693 (2017).CrossRefGoogle Scholar
Chung, I., Song, J. H., Im, J., Androulakis, J., Malliakas, C. D., Li, H., Freeman, A. J., Kenney, J. T., and Kanatzidis, M. G., J. Am. Chem. Soc. 134 (20), 8579 (2012).CrossRefGoogle Scholar
Yamada, K., Funabiki, S., Horimoto, H., Matsui, T., Okuda, T., and Ichiba, S., Chem. Lett., 20 (5), 801 (1991).CrossRefGoogle Scholar
Tanaka, S., Takiishi, M., Miyazaki, K., and Tsukamoto, H., ASME Proceedings, 477 (2008).Google Scholar
Zhou, Y., Garces, H. F., Senturk, B. S., Ortiz, A. L., and Padture, N. P., Mater. Lett. 110, 127 (2013).CrossRefGoogle Scholar
Foley, B. J., Girard, J., Sorenson, B. A., Chen, A. Z., Niezgoda, J. S., Alpert, M. R., Harper, A. F., Smilgies, D. M., Clancy, P., Saidi, W. A., and Choi, J. J., Journal of Materials Chemistry A, 5, 1, 113 (2017).CrossRefGoogle Scholar
Dualeh, A., Tetreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K., and Gratzel, M., Advanced Functional Materials, 24, 21, 3250 (2014).CrossRefGoogle Scholar
Takashiri, M., Miyazaki, K., Tanaka, S., Kurosaki, J., Nagai, D., and Tsukamoto, H., J. of Appl. Phys. 104 (8), 084302 (2008)CrossRefGoogle Scholar
Mele, P., Saini, S., Honda, H., Matsumoto, K., Miyazaki, K., Hagino, H., and Ichmose, A., Appl. Phys. Lett. 102(25), 253903 (2013).CrossRefGoogle Scholar
Minnich, A., Dresselhaus, M. S., Ren, Z. F., and Chen, G., Energy Environ. Sci, 2 (5), 466 (2009).CrossRefGoogle Scholar
Herz, L. M., ACS Energy Lett., 2 (7), 1539 (2017).CrossRefGoogle Scholar
Long, R., Liu, J., and Prezhdo, O. V., J. Am. Chem. Soc., 138 (11), 3884 (2016).CrossRefGoogle Scholar
Rowe, D. M., Shukla, V. S. and Savvides, N., Nature 290 (5809), 765 (1981).CrossRefGoogle Scholar
Saini, S., Yaddanapudi, H. S., Tian, K., Yin, Y., Magginetti, D., and Tiwari, A., Sci. Rep. 7, 44621 (2017).CrossRefGoogle Scholar
See, K. C., Feser, J. P., Chen, C. E., Majumdar, A., Urban, J. J., and Segalman, R. A., Nano letters, 10, 11, 4664 (2010).CrossRefGoogle Scholar