Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:20:29.105Z Has data issue: false hasContentIssue false

First determination of dissolution rates of oriented UO2 single crystals

Published online by Cambridge University Press:  24 January 2020

S. BERTOLOTTO
Affiliation:
CEA, DEN, DMRC, Univ Montpellier, Marcoule, France ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
S. SZENKNECT
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
S. LALLEMAN
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
R. PODOR
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
L. CLAPAREDE
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
A. MAGNALDO
Affiliation:
CEA, DEN, DMRC, Univ Montpellier, Marcoule, France
P. RAISON
Affiliation:
JRC Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
A. MESBAH
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
B. ARAB-CHAPELET
Affiliation:
CEA, DEN, DMRC, Univ Montpellier, Marcoule, France
N. DACHEUX*
Affiliation:
ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols-Sur-Cèze cedex, France
Get access

Abstract:

Millimetre UO2 single crystals were cut and oriented at JRC Karlsruhe. The orientation of each face of the parallelepiped single crystals was determined with Laue diffraction and the corresponding surface area by geometric measurements. Then, the (111), (100), (110) faces of each single crystal were polished to optical grade and characterized by XRD in order to confirm the surface orientation. The dissolution of the three single crystals was achieved in nitric acid media under dynamic conditions, at room temperature. Two dissolution regimes were observed for all samples. The normalized dissolution rate measured in the first step was not influenced by the crystallographic orientation of the faces. However, during the second step, (110) oriented faces were found to dissolve 4 times faster than the (100) faces. One explanation could involve the atomic composition of each oriented surface in the fluorite-type structure

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Herrmann, B., Dissolution de Pastilles d’UO2 Non Irradiées Dans l’acide Nitrique. Projet de retraitement et de traitement des déchets 1984.Google Scholar
Inoue, A., Mechanism of the Oxidative Dissolution of UO2 in HNO3 Solution. Journal of Nuclear Materials 1986, 138 (1), 152154.CrossRefGoogle Scholar
Nishimura, K., Chikazawa, T., Effect of Nitrous Acid on Dissolution of UO2 Powders in Nitric Acid - Optimal Conditions for Dissolving UO2. Journal of Nuclear Science and Technology 1995, 32, 157.CrossRefGoogle Scholar
Römer, J., Plaschke, M., Beuchle, G., Kim, J. I., In Situ Investigation of U(IV)-Oxide Surface Dissolution and Remineralization by Electrochemical AFM. Journal of Nuclear Materials 2003, 322 (1), 8086.CrossRefGoogle Scholar
Fukasawa, T., , Y. O.Relationship between Dissolution Rate of Uranium-Dioxide Pellets in Nitric-Acid Solutions and Their Porosity. Journal of Radioanalytical and Nuclear 1986, 106, 345356.CrossRefGoogle Scholar
Taylor, R. F., Sharratt, E. W., Chazal, L. E. M. d., Logsdail, D. H., Dissolution Rates of Uranium Dioxide Sintered Pellets in Nitric Acid Systems. Journal of Applied Chemistry 1963, 13, 3240.10.1002/jctb.5010130106CrossRefGoogle Scholar
Leinders, G., Cardinaels, T., Binnemans, K., Verwerft, M., Accurate Lattice Parameter Measurements of Stoichiometric Uranium Dioxide. Journal of Nuclear Materials 2015, 459, 135142.CrossRefGoogle Scholar
Cordara, T., Szenknect, S., Claparede, L., Podor, R., Mesbah, A., Lavalette, C., Dacheux, N., Kinetics of Dissolution of UO2 in Nitric Acid Solutions: A Multiparametric Study of the Non-Catalysed Reaction. Journal of Nuclear Materials 2017, 496, 251264.CrossRefGoogle Scholar
Springell, R., Rennie, S., Costelle, L., Darnbrough, J., Stitt, C., Cocklin, E., Lucas, C., Burrows, R., Sims, H., Wermeille, D., Water Corrosion of Spent Nuclear Fuel: Radiolysis Driven Dissolution at the UO2/Water Interface. Faraday Discuss. 2015, 180 (0), 301311.CrossRefGoogle ScholarPubMed
Rennie, S., Bright, E. L., Sutcliffe, J. E., Darnbrough, J. E., Rawle, J., Nicklin, C., Lander, G., Springell, H. R., The Role of Crystal Orientation in the Dissolution of UO2 Thin Films. Corrosion Science 2018, No. 145, 162169.CrossRefGoogle Scholar
Godinho, J. R. A., Piazolo, S., Evins, L. Z., Effect of Surface Orientation on Dissolution Rates and Topography of CaF2. Geochimica et Cosmochimica Acta 2012, 86, 392403.CrossRefGoogle Scholar
Maldonado, P., Godinho, J. R. A., Evins, L. Z., Oppeneer, P. M., Ab Initio Prediction of Surface Stability of Fluorite Materials and Experimental Verification. The Journal of Physical Chemistry C 117 (13), 66396650.CrossRefGoogle Scholar