Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:07:33.277Z Has data issue: false hasContentIssue false

Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases

Published online by Cambridge University Press:  30 December 2015

Saulius Juodkazis*
Affiliation:
School of Science, Swinburne University of Technology, John st., Hawthorn, Vic 3122, Australia
Arturas Vailionis
Affiliation:
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, U.S.A. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, U.S.A.
Eugene G. Gamaly
Affiliation:
Laser Physics Center, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
Ludovic Rapp
Affiliation:
Laser Physics Center, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
Vygantas Mizeikis
Affiliation:
Division of Global Research Leaders, (Research Institute of Electronics), Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
Andrei V. Rode
Affiliation:
Laser Physics Center, Research School of Physics and Engineering, Australian National University, ACT 0200, Australia
Get access

Abstract

New material phases formed under non-equilibrium conditions at pressures above 100 GPa and temperatures exceeding 104K, the conditions of the warm dense matter (WDM), have become accessible using micro-explosions triggered by ultra-short sub-1 ps pulses tightly focused into micro-volume with cross sections comparable with the wavelength of light. Laser-induced micro-explosions convert a material in a focal volume into a non-equilibrium disordered plasma state confined inside the bulk of pristine crystal. Ultra-high quenching rates overcome kinetic barriers to the formation of new metastable high pressure phases, which are preserved in the surrounding pristine crystal for following recovery and exploitation. Direct laser writing was used to pattern large areas by closely packed arrays of the microexplosion modified sites for structural characterisation of the minute volumes of nano-materials with transmission electron microscopy, diffraction and synchrotron X-ray diffraction. The method of ultrafast-laser induced confined microexplosion is demonstrated for modification and creation of new phases in case of bcc-Al inside sapphire, valence change of Fe-ions in olivine, formation of new tetragonal bt8 and st12 phases of silicon, Ge and O separation in GeO2 glass and molecular oxygen formation inside voids at the site of microexplosion inside glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gleason, A., Bolme, C., Lee, H., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R., Eggert, J., Fratanduono, D., Collins, G., Sandberg, R., Yang, W., and Mao, W., Nature Commun. 6, 8191 (2015).Google Scholar
Fletcher, L. B., Lee, H. J., Döppner, T., Galtier, E., Nagler, B., Heimann, P., Fortmann, C., LePape, S., Ma, T., Millot, M., Pak, A., Turnbull, D., Chapman, D. A., Gericke, D. O., Vorberger, J., White, T., Gregori, G., Wei, M., Barbrel, B., Falcone, R. W., Kao, C.-C., Nuhn, H., Welch, J., Zastrau, U., Neumayer, P., Hastings, J. B., and Glenzer, S. H., Nature Photonics 9, 274279 (2015).Google Scholar
Xu, Y., Shankland, T. J., and Poe, B. T., J. Geophys. Res. 105, 2786527875 (2000).Google Scholar
Knudson, M. D., Desjarlais, M. P., Becker, A., Lemke, R. W., Cochrane, K. R., Savage, M. E., Bliss, D. E., Mattsson, T. R., and Redmer, R., Science 348, 4551460 (2015).Google Scholar
McMillan, P. F., Nature Materials 1, 1925 (2002).Google Scholar
Juodkazis, S., Nishimura, K., Tanaka, S., Misawa, H., Gamaly, E. E., Luther-Davies, B., Hallo, L., Nicolai, P., and Tikhonchuk, V., Phys. Rev. Lett. 96, 166101 (2006).Google Scholar
Drake, R., Physics Today June (2010).Google Scholar
Ono, S., Oganov, A. R., Koyama, T., and Shimizu, H., Earth Planet. Sci. Lett. 246, 326335 (2006).Google Scholar
Oganov, A. R. and Ono, S., Proc. Natl. Acad. Sci. 102, 1082810831 (2005).Google Scholar
Gamaly, E., Vailionis, A., Mizeikis, V., Yange, W., Rode, A., and Juodkazis, S., High Energy Density Physics 8, 1317 (2012).Google Scholar
Vailionis, A., Gamaly, E. G., Mizeikis, V., Yang, W., Rode, A., and Juodkazis, S., Nature Communications 2, 445 (2011).Google Scholar
Rapp, L., Haberl, B., Pickard, C., Bradby, J., Gamaly, E., Williams, J., and Rode, A., Nature Commun. 6, 7555 (2015).Google Scholar
Shimotsuma, Y., Kazansky, P., Qiu, J., and Hirao, K., Phys. Rev. Lett. 91, 14 (2003).Google Scholar
Hnatovsky, C., Shvedov, V., Krolikowski, W., and Rode, A., Phys. Rev. Lett. 106, 123901 (2011).Google Scholar
Beresna, M., Gecevicius, M., Kazansky, P. G., and Gertus, T., Appl. Phys. Lett. 98, 201101 (2011).Google Scholar
Marcinkevicius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., and Nishii, J., Opt. Lett. 26, 277279 (2001).Google Scholar
Bellouard, Y., Said, A. A., and Bado, P., Opt. Express 13, 6635 (2005).Google Scholar
Burghoff, J., Nolte, S., and Tünnermann, A., Appl. Phys. A, 127132 (2007).CrossRefGoogle Scholar
Ams, M., Marshall, G., Dekker, P., Piper, J., and Withford, M., Laser Photon. Rev. 3, 535544 (2009).Google Scholar
Della Valle, G., Osellame, R., and Laporta, P., J. Optics A: Pure and Appl. Opt. 11, 013001 (2009).Google Scholar
Gamaly, E. G., Rapp, L., Roppo, V., Juodkazis, S., and Rode, A. V., New J. Phys. 15, 025018 (2013).Google Scholar
Aharonovich, I., Greentree, A. D., and Prawer, S., Nature Photonics 5, 397405 (2011).Google Scholar
Aharonovich, I. and Neu, E., Adv. Opt. Mater. 21, 911928 (2014).Google Scholar
Taniguchi, T., Watanabe, K., Koizumi, S., Sakaguchi, I., Sekiguchi, T., and Yamaoka, S., Appl. Phys. Lett. 81, 4145 – (2002).Google Scholar
Abtew, T. A., Gao, W., Gao, X., Sun, Y. Y., Zhang, S. B., and Zhang, P., Phys. Rev. Lett. 113, 136401 (2014).Google Scholar
Buividas, R., Aharonovich, I., Seniutinas, G., Wand, X. W., Rapp, L., Rode, A. V., Taniguchi, T., and Juodkazis, S., Opt. Lett.. (2015) (in press).Google Scholar
Shishonok, E. M. and Steeds, J. W., Phys. Sol. State 46, 982988 (2004).Google Scholar
Erasmus, R. M. and Comins, J. D., phys. stat. sol. (c) 1, 22692273 (2004).Google Scholar
Hashimoto, T., Juodkazis, S., and Misawa, H., Appl. Phys. A 83, 337340 (2006).Google Scholar
Juodkazis, S., Nishimura, K., Misawa, H., Ebisui, T., Waki, R., Matsuo, S., and Okada, T., Adv. Mat. 18, 13611364 (2006).Google Scholar
Wang, X. W., Buividas, R., Funabiki, F., Stoddart, P. R., Hosono, H., and Juodkazis, S., Appl. Phys. A (2015) (in press).Google Scholar
Mujica, A., Rubio, A., Minoz, A., and Needs, R. J., Rev. Mod. Phys. 75, 863912 (2003).Google Scholar
Juodkazis, K., Juodkazyte, J., Šebeka, B., Savickaja, I., and Juodkazis, S., J. Solid State Electrochem. 17, 22692276 (2013).Google Scholar
Buividas, R., Gervinskas, G., Tadich, A., Cowie, B. C. C., Mizeikis, V., Vailionis, A., de Ligny, D., Gamaly, E. G., Rode, A. V., and Juodkazis, S., Adv. Eng. Mat. 16, 767773 (2014).CrossRefGoogle Scholar
Bressel, L., de Ligny, D., Sonneville, C., Martinez-Andrieux, V., Mizeikis, V., Buividas, R., and Juodkazis, S., Opt. Mater. Express 1, 11501158 (2011).Google Scholar
Bressel, L., de Ligny, D., Sonneville, C., Martinez-Andrieux, V., and Juodkazis, S., J. Non-Crystal. Sol. 357, 26372640 (2011).Google Scholar