Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T07:03:28.695Z Has data issue: false hasContentIssue false

Epitaxial Piezoelectric Langasite Thin Films for High-Temperature Application

Published online by Cambridge University Press:  04 February 2019

Hendrik Wulfmeier*
Affiliation:
Clausthal University of Technology, Institute of Energy Research and Physical Technologies, Am Stollen 19 B, D-38640 Goslar, Germany
René Feder
Affiliation:
Clausthal University of Technology, Institute of Energy Research and Physical Technologies, Am Stollen 19 B, D-38640 Goslar, Germany
Li Zhao
Affiliation:
Clausthal University of Technology, Institute of Energy Research and Physical Technologies, Am Stollen 19 B, D-38640 Goslar, Germany
Holger Fritze
Affiliation:
Clausthal University of Technology, Institute of Energy Research and Physical Technologies, Am Stollen 19 B, D-38640 Goslar, Germany
Get access

Abstract

The homo- and heteroepitaxial deposition of LGS (langasite, La3Ga5SiO14) thin films on LGS single crystals, Si and SiO2 substrates by pulsed laser deposition (PLD) is demonstrated. PLD is performed at substrate temperatures up to about 700 °C and results initially in Ga deficient films. Two strategies of counterbalancing the Ga deficit are realized. First, off-stoichiometric targets with an enhanced Ga content are applied. Secondly, an increased oxygen partial pressure up to about 6 Pa is used during deposition to suppress evaporation of Ga suboxides. Combining these adaptions results in the growth of stoichiometric LGS thin films. Films deposited on LGS substrates do not show any additional X-ray diffraction reflexes nor broadening of the peaks with respect to the single crystalline substrates. Therefore, the homoepitaxial approach can be considered successful. The deposition on Si and SiO2 substrates under the same conditions leads to the formation of polycrystalline films. However, post-annealing at 800 °C increases crystallinity. Stoichiometry and homogeneous distribution of La, Ga and Si cations are confirmed by secondary neutral mass spectrometry (SNMS). The composition remains constant within the film, implying stable process parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Shimamura, K., Takeda, H., Kohno, T., and Fukuda, T., J. Cryst. Growth 163, 388392 (1996).CrossRefGoogle Scholar
Fritze, H., Schulz, M., Seh, H., Tuller, H.L., Mater. Res. Soc. Symp. Proc. 835, 157162 (2005).Google Scholar
Fritze, H., Schulz, M., Seh, H., and Tuller, H.L., Solid State Ionics 177, 23132316 (2006).CrossRefGoogle Scholar
Yu, F., Zhang, Sh., Zhao, X., Yuan, D., Qin, L., Wang, Q.-M., and Shrout, T.R., J. Appl. Phys. 109, 114103 (2011).CrossRefGoogle Scholar
Thiele, J.A. and Pereira da Cunha, M., Sens. Actuators B 113, 816822 (2006).CrossRefGoogle Scholar
Tuller, H.L. and Fritze, H., U.S. Patent No. 6 370 955 (16 April 2002).Google Scholar
Seh, H., Tuller, H.L., and Fritze, H., J. Eur. Ceram. Soc. 24, 14251429 (2004).CrossRefGoogle Scholar
Schröder, S., Fritze, H., Bishop, S., Chen, D., Tuller, H.L., Appl. Phys. Lett. 112, 213502 (2018).CrossRefGoogle Scholar
Richter, D., Schulz, M., Sakharov, S., Davis, Z.J., and Fritze, H., Mater. Res. Soc. Symp. Proc. 1519, mrsf12-1519-mm03-29 (2013).CrossRefGoogle Scholar
Firebaugh, S.L., Jensen, K.F., Schmidt, M.A., J. Microelectromech. Systems 7, 128135 (1998).CrossRefGoogle Scholar
Sauerwald, J., Richter, D., Ansorge, E., Schmidt, B., and Fritze, H., Phys. Status Solidi A 208, 390403 (2011).CrossRefGoogle Scholar
Seh, H. and Tuller, H.L., J. Electroceram. 16, 115125 (2006).CrossRefGoogle Scholar
Aubert, T., Bardong, J., Legrani, O., Elmazria, O., Badreddine Assouar, M., Bruckner, G., and Talbi, A., J. Appl. Phys. 114, 014505 (2013).CrossRefGoogle Scholar
Parks, D.A., Tittmann, B.R., and Kropf, M.M., AIP Conf. Proc. 1211, 10291034 (2010).CrossRefGoogle Scholar
Fritze, H., Schulz, M., Seh, H., Tuller, H.L., Ganschow, S., and Jacobs, K., Solid State Ionics 177, 31713174 (2006).CrossRefGoogle Scholar
Brauer, G., Handbuch der Präparativen Anorganischen Chemie, 3rd ed. (Ferdinand Enke Verlag, Stuttgart, 1975).Google Scholar
Spieß, L., Teichert, G., Schwarzer, R., Behnken, H., and Genzel, C., Moderne Röntgenbeugung, 2nd ed. (Vieweg+Teubner, Wiesbaden, 2009).CrossRefGoogle Scholar