Published online by Cambridge University Press: 02 January 2019
In this work, we report evidences of the improvement of X-ray attenuation efficiency by the addition of a very small amount of Graphene Oxide (GO) in polymer-based nanocomposite. Poly(vinylidene fluoride) (PVDF) homopolymer and barium sulfate (BaSO4) nanoparticles were mixed. PVDF/BaSO4 nanocomposite was found to attenuate 9.14% of a 20 kV X-ray beam. The addition of only 4.0 wt % of GO nanosheets to the nanocomposite improved this X-Ray attenuation efficiency to 24.56%. The respective linear attenuation coefficients (μ) were 39.9 cm-1 and 54.4 cm-1, respectively. The X-ray attenuation gradually decreases until 6.71% and 17.62%, respectively, for the X-ray beam with higher energy (100 kV). Fourier transform infrared data revealed that, due to the lack of the bending vibration modes of CF2 molecule at 656 cm-1, 688 cm-1, 723 cm-1, 776 cm-1and 796 cm-1, characteristics of the γ-crystalline phase of PVDF, the nanocomposites casted from solution are mostly in the β-ferroelectric phase of PVDF, besides the γ-paraelectric phase. SEM micrographs were used to evaluate the dispersion state of graphene sheets and the BaSO4 nanoparticles into the polymeric matrix. UV-Vis spectrometry and Differential Scanning Calorimetry (DSC) were also performed in order to complement the structural analysis. The results confirm that the addition of graphene sheets in PVDF polymer-based nanocomposites enhances the X-ray shielding efficiency. The phenomenon is discussed in terms of the reported anomalous negative thermal expansion coefficient of graphene sheets