Published online by Cambridge University Press: 30 January 2017
We proposed an MgO barrier which is fabricated by combination of rf-sputter deposition of MgO film and subsequent in-situ post oxidation (PO). We found that the perpendicular magnetic anisotropy (PMA) of the CoFeB layer formed on this MgO barrier with PO was improved. We also found that a short error rate reduced drastically and a magnetoresistance (MR) ratio increased about 20% for the magnetic tunnel junction (MTJ) with this MgO barrier with PO. In addition, we showed that this MgO barrier with PO has long endurance life compared with conventional sputtered MgO barriers, and has a potential to operate over 1016 write cycles.
Furthermore, we have observed that the PO could suppress the Fe diffusion into the MgO barrier and form Fe-O bonding at MgO/CoFeB interface using electron energy-loss spectroscopy (EELS). The obtained results might be involved to the improvement of PMA and MTJ characteristics.