Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T12:47:13.325Z Has data issue: false hasContentIssue false

Energy Landscape of Displacive Phase Transition of β to ω in Ti-V alloys

Published online by Cambridge University Press:  27 February 2017

Wei Mei
Affiliation:
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China.
Jian Sun*
Affiliation:
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China.
*
*Corresponding author: jsun@sjtu.edu.cn.
Get access

Abstract

The ground state properties of pure Ti with α, β and ω structures and of the binary Ti-xV(x=5‒30) at.% alloys with β and ω structures were calculated by first-principles method based on density functional theory, and subsequently the energy landscape of the displacive phase transition of β to ω were determined. The calculated results show that the energy barrier appears for the displacive phase transition of β to ω in Ti-(15‒30) at.% V alloys at 300 K, but does not at 0 K. The energy barriers increase monotonously with increase of the temperature and the V content. These results can explain the formation of athermal ω phase and shear-assisted β to ω transition observed in as-quenched Ti-V base alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sikka, S.K., Vohra, Y.K., Chidambaram, R., Prog. Mater Sci. 27, 245310 (1982).CrossRefGoogle Scholar
Banerjee, S., Tewari, R., Dey, G.K., Int. J. Mater. Res. 97, 963977 (2006).Google Scholar
Yan, J.Y., Olson, G.B., J. Alloys Compd. 673, 441454 (2016).CrossRefGoogle Scholar
Leibovitch, C., Rabinkin, A., Talianker, M., Metall. Trans. A 12, 15131519 (1981).Google Scholar
Aurelio, G., Guillermet, A.F., Cuello, G., Campo, J., Metall. Mater. Trans. A 33, 13071317 (2002).Google Scholar
Hohenberg, P., Kohn, W., Phys. Rev. 136, B864871 (1964).Google Scholar
Kohn, W., Sham, L.J., Phys. Rev. 140, A11331138 (1965).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
Bellaiche, L., Vanderbilt, D., Phys. Rev. B 61, 78777882 (2000).Google Scholar
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 51885192 (1976).Google Scholar
Pfrommer, B.G., Côté, M., Louie, S.G., Cohen, M.L., J. Comput. Phys. 131, 233240 (1997).Google Scholar
Fisher, E.S., Renken, C.J., Phys. Rev. 135, A482494 (1964).CrossRefGoogle Scholar
Metals, Thermal and Mechanical Data, edited by Allard, S., Pergamon Press, New York, 1969.Google Scholar
Tane, M., Okuda, Y., Todaka, Y., Ogi, H., Nagakubo, A., Acta Mater. 61, 75437554 (2013).Google Scholar
Hennig, R.G., Lenosky, T.J., Trinkle, D.R., Rudin, S.P., Wilkins, J.W., Phys. Rev. B 78, 054121 (2008).Google Scholar
Hu, C.E., Zeng, Z.Y., Zhang, L., Chen, X.R., Cai, L.C., Alfè, D., J. Appl. Phys. 107, 093509 (2010).Google Scholar
Ikehata, H., Nagasako, N., Furuta, T., Fukumoto, A., Miwa, K., Saito, T., Phys. Rev. B 70, 174113174120 (2004).Google Scholar
Born, M., Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press, London, 1954.Google Scholar
Boettger, J.C., Wallace, D.C., Phys. Rev. B 55, 28402849 (1997).Google Scholar
Tegner, B.E., Zhu, L.G., Ackland, G.J., Phys. Rev. B 85, 214106214109 (2012).Google Scholar
Moruzzi, V.L., Janak, J.F., Schwarz, K., Phys. Rev. B 37, 790799 (1988).CrossRefGoogle Scholar
Chen, Q., Sundman, B., Acta Mater. 49, 947961 (2001).Google Scholar
Nag, S., Devaraj, A., Srinivasan, R., Williams, R.E., Gupta, N., Viswanathan, G.B., Tiley, J.S., Banerjee, S., Srinivasan, S.G., Fraser, H.L., Banerjee, R., Phys. Rev. Lett. 106, 245701245704 (2011).Google Scholar
Zhao, X., Niinomi, M., Nakai, M., Hieda, J., Mater. Trans. 53, 13791384 (2012).Google Scholar
Furuhara, T., Kishimoto, K., Maki, T., Mater. Trans. 35, 843850 (1994).Google Scholar