Published online by Cambridge University Press: 27 February 2017
The ground state properties of pure Ti with α, β and ω structures and of the binary Ti-xV(x=5‒30) at.% alloys with β and ω structures were calculated by first-principles method based on density functional theory, and subsequently the energy landscape of the displacive phase transition of β to ω were determined. The calculated results show that the energy barrier appears for the displacive phase transition of β to ω in Ti-(15‒30) at.% V alloys at 300 K, but does not at 0 K. The energy barriers increase monotonously with increase of the temperature and the V content. These results can explain the formation of athermal ω phase and shear-assisted β to ω transition observed in as-quenched Ti-V base alloys.