Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:52:50.056Z Has data issue: false hasContentIssue false

Encapsulation of active fractions of whey proteins with antioxidant potential in pectin-collagen and pectin-gelatin microparticles

Published online by Cambridge University Press:  26 January 2019

Jazmin Castillo Sanabria
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
Claudia Rosario Muro Urista*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
Rosa Elena Ortega Aguilar
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
Javier Illescas
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
María del Carmen Díaz Nava
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
Guillermo Carbajal Franco
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Postgrado e Investigación, México.
Get access

Abstract

The aim of the present research was to evaluate pectin-gelatine and pectin-collagen polymeric compounds as encapsulating and releasing matrices for whey active peptides with antioxidant properties. Active peptides were obtained by hydrolysis of whey proteins with thermolysin and proteinase enzymes from B. subtilis. The hydrolysates were fractioned and encapsulated in the pectin composite matrices to obtain particles loaded with active whey peptides. The composite particles were analysed by SEM and IR techniques. In addition, they were also tested under simulated gastric conditions to evaluate the encapsulation efficiency and delivering power of the composite materials. The results showed that both encapsulation particles were excellent supports, because they retained to-the peptides and maintained their antioxidant activity during the simulated gastric process (120 min). However, the pectin gelatine particles were digested faster than those of pectin-collagen. The peptides from-encapsulated in pectin-gelatine were released within this time, showing an increment in the-antioxidant activity. Peptides from gelatine protein were also released by the gastric enzymes, and thus also they contributed to the antioxidant activity; in addition to the whey peptides.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Muro Urista, C., Álvarez Fernández, R., Riera Rodríguez, F., Arana Cuenca, A., & Téllez Jurado, A. (2011). Production and functionality of active peptides from milk. Food Science and Technology International, 17(4), 293-317.CrossRefGoogle ScholarPubMed
Neira-Carrillo, A., Muñoz, D. Y., Zazzali, P. A., Marini, Y. A., Vilches, S. V., & Palma, R. E. (2013). Encapsulación de biomoléculas usando polímeros naturales:“un nuevo enfoque en la entrega de fármacos en medicina”. Avances en Ciencias Veterinarias, 28(2), ág-31.Google Scholar
Pérez, Y. A., Urista, C. M., Martínez, J. I., Nava, M. D. C. D., & Rodríguez, F. A. R. (2016). Functionalized polymers for enhance oral bioavailability of sensitive molecules. Polymers, 8(6), 214.CrossRefGoogle Scholar
Tamm, F., Härter, C., Brodkorb, A., & Drusch, S. (2016). Functional and antioxidant properties of whey protein hydrolysate/pectin complexes in emulsions and spray-dried microcapsules. LWT-Food Science and Technology, 73, 524-527.CrossRefGoogle Scholar
Rao, P. S., Bajaj, R. K., Mann, B., Arora, S., & Tomar, S. K. (2016). Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. Journal of food science and technology, 53(10), 3834-3843.CrossRefGoogle ScholarPubMed
Tovar Jiménez, X., Arana Cuenca, A., Téllez Jurado, A., Abreu Corona, A., & Muro Urista, C. R. (2012). Traditional methods for whey protein isolation and concentration: effects on nutritional properties and biological activity. Journal of the Mexican Chemical Society, 56(4), 369-377.Google Scholar
Alvarado, Y., Muro, C., Maciel, A., Álvarez, J., & Riera, F. (2018). Antihypertensive and antioxidant properties from whey Protein hydrolysates produced by encapsulated Bacillus subtilis Cells. International Journal of Peptides Research and Therapeutics, 1-9.Google Scholar
Alting, L., Hauschild, M., & Wenzel, H. (1997). Environmental assessment in product development. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 355(1728), 1373-1388.CrossRefGoogle Scholar
Gómez-Mascaraque, L. G., Miralles, B., Recio, I., & López-Rubio, A. (2016). Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development. Journal of Functional Foods, 26, 290-300.CrossRefGoogle Scholar