Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:09:05.343Z Has data issue: false hasContentIssue false

Electrical Properties of Bottom Gate Poly-Si TFTs by NiSi2 Seed-Induced Lateral Crystallization and Its Applications

Published online by Cambridge University Press:  14 July 2016

Sol Kyu Lee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Ki Hwan Seok
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Zohreh Kiaee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Hyung Yoon Kim
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Hee Jae Chae
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Yong Hee Lee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Gil Su Jang
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Seung Ki Joo*
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
*
Get access

Abstract

In this paper, the electrical properties of bottom-gate (BG) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) by NiSi2 seed-induced lateral crystallization (SILC) and its applications are presented. Sequential lateral solidification (SLS), which is one of crystallization methods, is known to have poor electrical properties of TFTs with BG structures due to problems induced by laser. Therefore, the laser method cannot be used to well-developed production line of amorphous-Si (a-Si) TFT, resulting in large initial investment cost to change fabrication procedures. On the other hand, the BG poly-Si TFT by SILC (SILC-BGPS TFT) has basically compatible process flows with that of the a-Si TFT. The SILC-BGPS TFT exhibited threshold voltage of -3.9 V, steep subthreshold slope of 130 mV/dec, a high field-effect mobility of 129 cm2/Vs , and I on /I off ratio of ∼106.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stewart, M., Howell, R. S., Pires, L., and Hatalis, M. K., IEEE Trans. Electron Devices, 48, 5, 845851 (2001).CrossRefGoogle Scholar
Lih, J. J., Sung, C. F., Li, C. H., Hsiao, T. H. and Lee, H. H., SID Symp. Digest of Tech. Papers, 35, 1, 15041507 (2004).Google Scholar
Plais, F., Legagneux, P., Reita, C., Huet, O., Petinot, F., Pribat, D., Godard, B., Stehle, M. and Fogarassy, E., Microelectron. Eng., 28, 14, 443-446 (1995).CrossRefGoogle Scholar
Kim, H. D., Jeong, J. K., Chung, H. J. and Mo, Y. G., SID Symp. Digest of Tech. Papers, 39, 1, 291294 (2008).CrossRefGoogle Scholar
Wu, I. W., Solid State Phenom., 37, 38, 553564 (1994).CrossRefGoogle Scholar
Tsai, C. C., Chen, H. H., Chen, B. T., and Cheng, H. C., IEEE Electron Device Lett., 28, 7, 599602 (2007).CrossRefGoogle Scholar
Kang, I. S., Han, S. H., and Joo, S. K., IEEE Electron Device Lett., 29, 3, 232234 (2008).CrossRefGoogle Scholar
Lee, Y. W., Yang, G. F., Reddy, A. M., Byun, C. W., Son, S. W., Yun, S. J., Joo, S. K., Current Appl. Phys., 13, 2, 182185 (2013).CrossRefGoogle Scholar
Lee, S. K., Seok, K. H., Park, J. H., Kim, H. Y., Chae, H. J., Jang, G. S., Lee, Y. H., Han, J. S., and Joo, S. K., Appl. Phys. A 122, 613 (2016)Google Scholar
Lee, S. W. and Joo, S. K., IEEE Electron Device Lett., 17, 4, 160162 (1996).Google Scholar
Byun, C. W., Reddy, A. M., Son, S. W., and Joo, S. K., Electronic Materials Lett., 8, 4, 369374 (2012).CrossRefGoogle Scholar
Byun, C. W., Son, S. W., Lee, Y. W., Kang, H. M., Park, S. A., Lim, W. C., Li, T., Joo, S. K., J. of The Electrochem. Society, 159, 4, 115121 (2012).Google Scholar
Levinson, J., Shepherd, F. R., Scanlon, P. J., Westwood, W. D., Este, G., and Rider, M., J. Appl. Phys., 53, 2, 11931202 (1982).CrossRefGoogle Scholar
Oh, K., Yang, S., Lee, J., Park, K. and Sung, M.Y., Electronics Letters, 51, 20302032 (2015).Google Scholar
K. P., A. Kumar, Sin, J. K. O., Nguyen, C. T., Ko, P. K., IEEE Trans. Electron Devices 45, 2514 (1998).Google Scholar