Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:43:35.223Z Has data issue: false hasContentIssue false

Electric field effects in chalcogenides

Published online by Cambridge University Press:  08 June 2018

Litian Chew*
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Weiling Dong
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Alok Ranjan
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Jitendra K. Behera
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Li Lu
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Robert E Simpson
Affiliation:
Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372
Get access

Abstract

The objective of this paper is to demonstrate that Ag readily diffuses into Sb2S3 and that electric fields can control the diffusion. Ag diffusion influences the crystallization temperature and electrical properties of Sb2S3. We studied the interface between Ag and Sb2S3 using X-ray reflectivity and show that the Ag cations can be controlled by applying an electric field. We believe this effect has technological applications in data storage devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bez, R., Camerlenghi, E., Modelli, A. and Visconti, A., Proc. IEEE, 91(4), 489502 (2003).CrossRefGoogle Scholar
Mills, DR., Dipert, BL., Sambandan, S, McCormick, B., Pashley, R., U.S. Patent No. 6,026,465, (15 Feb 2000).Google Scholar
Kawaguchi, A., Nishioka, S. and Motoda, H. in A flash-memory based file system (USENIX ‘95 Tech. Con. Proc, New Orleans, Louisiana, 1995). 155164Google Scholar
Lasser, M., Murin, M., Eyal, A., U.S Patent No. 7,752,382, (6 Jul 2010).Google Scholar
Waldecker, L., Miller, T., Rudé, M., Bertoni, R., Osmond, J., Pruneri, V., Simpson, R., Ernstorfer, R. and Wall, S., Nat. Mater. 14(10), 991995 (2015).CrossRefGoogle Scholar
Loke, D., Lee, T., Wang, W., Shi, L., Zhao, R., Yeo, Y., Chong, T. and Elliott, S., Sci. 336 (6088), 1566-1569 (2012).CrossRefGoogle Scholar
Behera, J., Zhou, X., Tominaga, J. and Simpson, R., Opt. Mater. Express, 7(10), 3741 (2017).CrossRefGoogle Scholar
Wuttig, M. and Yamada, N., Nat. Mater. 6(11), 824832 (2007).CrossRefGoogle Scholar
Arun, P., Vedeshwar, A. and Mehra, N., J. Phys. D: Appl. Phys. 32(3), 183190 (1999).CrossRefGoogle Scholar
Arun, P., Vedeshwar, A. and Mehra, N., Mater. Res. Bull. 32(7), 907913 (1997).CrossRefGoogle Scholar
Arun, P. and Vedeshwar, A., J. Appl. Phys. 79(8), 4029 (1996).CrossRefGoogle Scholar
Piccione, B., Agarwal, R., Jung, Y. and Agarwal, R., Philos. Mag. 93(17), 20892121 (2013).CrossRefGoogle Scholar
Pandian, R., Kooi, B., De Hosson, J. and Pauza, A., J. Appl. Phys. 100(12), 123511 (2006).CrossRefGoogle Scholar
McMorrow, D. and Als-Nielsen, J., Elements of modern x-ray physics. (John Wiley & Sons Ltd, United Kingdom, 2011), 87.Google Scholar
Valov, I., Waser, R., Jameson, J. and Kozicki, M., Nanotechnol. 22(28), 289502 (2011).CrossRefGoogle Scholar
Waser, R. and Aono, M., Nat. Mater. 6(11), 833840 (2007)CrossRefGoogle Scholar
Diffrac, P., Appl. Surf. Sci. 253, 106 (2006).Google Scholar
Dong, W., Krbal, M., Kalikka, J., Chin, X., Gholipour, B., Soci, C., Fons, P., Mitrofanov, K., Chen, L. and Simpson, R., Thin Solid Films, 616, 8085 (2016).CrossRefGoogle Scholar
Valov, I., Sapezanskaia, I., Nayak, A., Tsuruoka, T., Bredow, T., Hasegawa, T., Staikov, G., Aono, M. and Waser, R., Nat. Mater. 11(6), 530535 (2012).CrossRefGoogle Scholar
Dalba, G., Fornasini, P., Giunta, G. and Burattini, E., J. Non-Cryst. Solids, 107 (2-3), 261270 (1989).CrossRefGoogle Scholar