Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T10:52:20.873Z Has data issue: false hasContentIssue false

Effect of production and curing conditions on the performance of stabilized compressed earth blocks: Kaolinite vs quartz-rich earthen material

Published online by Cambridge University Press:  05 March 2020

Philbert Nshimiyimana*
Affiliation:
Laboratoire Eco-Matériaux et Habitats Durables (LEMHaD), Institut International d’Ingénierie de l’Eau et de l’Environnement (Institut 2iE), Rue de la Science, 01, BP 594 Ouagadougou 01, Burkina Faso. Urban and Environmental Engineering (UEE), Université de Liège (ULiege), Allée de la Découverte, 9, 4000 Liège, Belgium.
Hassan Seini Moussa
Affiliation:
Laboratoire Eco-Matériaux et Habitats Durables (LEMHaD), Institut International d’Ingénierie de l’Eau et de l’Environnement (Institut 2iE), Rue de la Science, 01, BP 594 Ouagadougou 01, Burkina Faso.
Adamah Messan
Affiliation:
Laboratoire Eco-Matériaux et Habitats Durables (LEMHaD), Institut International d’Ingénierie de l’Eau et de l’Environnement (Institut 2iE), Rue de la Science, 01, BP 594 Ouagadougou 01, Burkina Faso.
Luc Courard
Affiliation:
Urban and Environmental Engineering (UEE), Université de Liège (ULiege), Allée de la Découverte, 9, 4000 Liège, Belgium.
*
*Corresponding author: Philbert Nshimiyimana; pnshimiyimana@doct.uliege.be.
Get access

Abstract

This study investigated the effect of production and curing parameters on the mechanical performance of compressed earth blocks (CEBs) stabilized with 0-20 wt % CCR (calcium carbide residue). Kaolinite (K) and quartz (Q)-rich earthen materials were mixed with the CCR and used to mould CEBs at optimum moisture content (OMC) and OMC+2 % of the dry mixtures, cured at 20 °C, ambient temperature in the lab (30±5 °C) and 40 °C for 0-90 days. After curing, the reactivity of the materials and compressive strength of dry CEBs were tested. Increasing the moulding moisture from OMC to OMC+2 decreased the compressive strength 0.3 times (4.4 to 3.3 MPa) for the CEBs stabilized with 20 % CCR cured at 30±5 °C for 45 days. Similarly, the compressive strength (4.4 MPa) was reached by CEBs stabilized with 10 and 20 % CCR after 28 and 45 days of curing, respectively. At 40 °C, the compressive strength increased 3.3 times (1.1 to 4.7 MPa with 0 to 20 % CCR) for K-rich and 2.5 times (2 to 7.1 MPa) for Q˗rich materials. At 20 °C, the compressive strength increased only 1.3 times (1.1 to 2.5 MPa) for K˗rich and barely 0.7 times (2 to 3.4 MPa) for Q-rich materials. These suggest that CCR is useful for stabilization and improving the performances of CEBs in hot regions.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sajanthan, K., Balagasan, B., and Sathiparan, N., “Prediction of compressive strength of stabilized earth block masonry,” Adv Civ Eng, vol. 2019, 2019.Google Scholar
Murmu, A. L. and Patel, A., “Towards sustainable bricks production: An overview,” Construction and Building Materials, vol. 165. Elsevier Ltd, pp. 112125, 2018.Google Scholar
Nshimiyimana, P., Miraucourt, D., Messan, A., and Courard, L., “Calcium Carbide Residue and Rice Husk Ash for improving the Compressive Strength of Compressed Earth Blocks,” MRS Adv, vol. 3, no. 34–35, pp. 20092014, 2018.CrossRefGoogle Scholar
Fabbri, A., Morel, J.-C., and Gallipoli, D., “Assessing the performance of earth building materials: a review of recent developments,” RILEM Tech Lett, vol. 3, pp. 4658, 2018.CrossRefGoogle Scholar
Moussa, H. S., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., and Courard, L., “Comparative Study of Thermal Comfort Induced from Masonry Made of Stabilized Compressed Earth Block vs Conventional Cementitious Material,” J Miner Mater Charact Eng, vol. 7, pp. 385403, 2019.Google Scholar
Sore, O. S., Messan, A., Prud’homme, E., Escadeillas, G., and Tsobnang, F., “Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso,” Constr Build Mater, vol. 165, pp. 333345, 2018.CrossRefGoogle Scholar
Hema, C. M., Van Moeseke, G., Evrad, A., Courard, L., and Messan, A., “Vernacular housing practices in Burkina Faso: Representative models of construction in Ouagadougou and walls hygrothermal efficiency,” in Energy Procedia, 2017, vol. 122, pp. 535540.CrossRefGoogle Scholar
Nshimiyimana, P., Messan, A., Zhao, Z., and Courard, L., “Chemico-microstructural changes in earthen building materials containing calcium carbide residue and rice husk ash,” Constr Build Mater, vol. 216C, pp. 622631, 2019.CrossRefGoogle Scholar
Malbila, E., Toguyeni, D. Y. K., Bamogo, S., Lawane, A., and Koulidiati, J., “Thermophysical and Mechanical Characterization of Local Stabilized Materials Suitable for Buildings in Dry and Hot Climate,” J Mater Sci Surf Eng, vol. 6, no. 2, p. 6, 2018.Google Scholar
Al-Mukhtar, M., Lasledj, A., and Alcover, J.-F., “Behaviour and mineralogy changes in lime-treated expansive soil at 20°C,” Appl Clay Sci, vol. 50, no. 2, pp. 191198, Oct. 2010.CrossRefGoogle Scholar
Al-Mukhtar, M., Lasledj, A., and Alcover, J.-F., “Behaviour and mineralogy changes in lime-treated expansive soil at 50°C,” Appl Clay Sci, vol. 50, no. 2, pp. 199203, Oct. 2010.CrossRefGoogle Scholar
Nshimiyimana, P., Fagel, N., Messan, A., Wetshondo, O. D., and Courard, L., “Physico-chemical and mineralogical characterization of clay materials suitable for production of stabilized compressed earth blocks,” Constr Build Mater , Vol 241, pp.1-13, 2020.CrossRefGoogle Scholar
CDE, CRATerre-EAG, and ENTPE, Compressed earth blocks: testing procedures guide-Technology series N° 16. Brussels-Belgium: CDE (ARSO), 2000.Google Scholar
AFNor, XP P13-901: Blocs de terre comprimée pour murs et cloisons, Définitions-Spécifications-Méthodes d’essais-Conditions de réception. Saint-Denis La Plaine Cedex: AFNor, 2001.Google Scholar