Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:45:59.907Z Has data issue: false hasContentIssue false

Effect of cooling profile on crystalline phases, oxidation state, and chemical partitioning of complex glasses

Published online by Cambridge University Press:  04 February 2020

J. Marcial*
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA Materials Science and Engineering Program, Washington State University, Pullman, WA, USA
O. K. Neill
Affiliation:
School of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
M. Newville
Affiliation:
CARS, University of Chicago, Chicago, IL, USA
J. V. Crum
Affiliation:
Pacific Northwest National Laboratory, Richland, WA, USA
J. McCloy
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA Materials Science and Engineering Program, Washington State University, Pullman, WA, USA Pacific Northwest National Laboratory, Richland, WA, USA
*
*Corresponding author: J. Marcial, email: jose.marcial@wsu.edu
Get access

Abstract:

Investigations of the crystallization of aluminosilicate phases within Hanford nuclear waste glasses typically involve subjecting samples to the canister centerline cooling (CCC) schedule. This cooling schedule is representative of the slowest cooling thermal profile which these glasses will experience after the glass is poured into the high level waste (HLW) container. However, few investigations have observed how the crystallization behavior changes by varying the heat treatment schedule. In the present study, three Hanford HLW glasses are subjected to CCC and isothermal heat treatments (IHT) to better understand the evolution of phases and the chemical partitioning due to temperature schedule. Samples were characterized using electron probe microanalysis, X-ray diffraction, micro X-ray fluorescence, and micro X-ray absorption spectroscopy. From IHT, eucryptite and apatite phases were observed which were not observed during CCC. Spatially-resolved measurements demonstrated that the oxidation state of the iron was similar among glass and crystal, and we suggest a mechanism to describe the compositional fluctuations near the crystal-glass interface which influence crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kruger, A. A., Proc. for Waste Manag. Conf. (1), 1-15 (2013).Google Scholar
Goel, A., McCloy, J., Pokorny, R. and Kruger, A. A., J. Non-Cryst. Solids X 4, 1-19 (2019).Google Scholar
Amoroso, J., SRNL-STI-2011-00546 (2011).CrossRefGoogle Scholar
Riley, B. J., Hrma, P., Rosario, J. and Vienna, J. D., Ceram. Trans. 132, 257-265 (2001).Google Scholar
McCloy, J. S., Rodriguez, C., Windisch, C., Leslie, C., Schweiger, M. J., Riley, B. R. and Vienna, J. D., in Advances in Materials Science for Environmental and Nuclear Technology (John Wiley & Sons, Inc., 2010), pp. 63-76.CrossRefGoogle Scholar
Jantzen, C. M. and Bickford, D. E., in Materials Research Society Proceedings (Pittsburgh, PA, USA, 1985), Vol. 44, pp. 11.Google Scholar
Besmann, T. M., Spear, K. E. and Beahm, E. C., MRS Proc. 608 (2011).Google Scholar
Rodriguez, C. P., McCloy, J., Schweiger, M. J., Crum, J. V. and Winschell, A., Report No. PNNL-20184, 2011.Google Scholar
Marcial, J., McCloy, J. and Neill, O., in Symposium on Scientific Basis for Nuclear Waste Management XX (Mater. Res. Soc. Symp. Proc., Boston, MA, USA, 2015).Google Scholar
Marcial, J., Crum, J., Neill, O. and McCloy, J., Amer. Mineral. 101 (2), 266-276 (2016).CrossRefGoogle Scholar
Hrma, P., Schweiger, M. J., Humrickhouse, C. J., Moody, J. A., Tate, R. M., Rainsdon, T. T., TeGrotenhuis, N. E., Arrigoni, B. M., Marcial, J., Rodriguez, C. P. and Tincher, B. H., Ceramics-Silikaty 54, 193-211 (2010).Google Scholar
Li, H., Vienna, J. D., Hrma, P., Smith, D. E. and Schweiger, M. J., in Scientific Basis for Nuclear Waste Management XX (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1997), Vol. 465, pp. 261-268.Google Scholar
Tindwa, R. M., Perrotta, A. J., Jerus, P. and Clearfield, A., Mat. Res. Bull. 17 (7), 873-881 (1982).CrossRefGoogle Scholar
Dondur, V., Dimitrijevic, R. and Petranovic, N., J. Mater. Sci. 23 (11), 4081-4084 (1988).Google Scholar
Wang, Z., Liu, J., Zhou, Y., Neeway, J., Schreiber, D. K., Crum, J. V., Ryan, J. V., Wang, X. L., Wang, F. and Zhu, Z., Surf. Interface Anal. 48, 1392-1401 (2016).CrossRefGoogle Scholar
Jantzen, C. M. and Brown, K. G., J. Amer. Ceram. Soc. 90 (6), 1880-1891 (2007).CrossRefGoogle Scholar
Billings, A. and Edwards, T. T., SRNL-STI-2009-00025 (2009).Google Scholar
Billings, A. and Edwards, T. T., SRNL-STI-2010-00373 (2010).Google Scholar
McClane, D. L., Amoroso, J. W., Fox, K. M. and Kruger, A. A., J. Non-Cryst. Solids 505, 215-224 (2019).CrossRefGoogle Scholar
Norby, P., Zeolites 10 (3), 193-199 (1990).CrossRefGoogle Scholar
Dingwell, D. B. and Virgo, D., Geochim. Cosmochim. Acta 51 (1), 195-205 (1987).CrossRefGoogle Scholar
Hrma, P., J. Non-Cryst. Solids 356, 3019-3025 (2010).CrossRefGoogle Scholar
Hujova, M., Pokorny, R., Klouzek, J., Lee, S. M., Traverso, J. J., Schweiger, M. J., Kruger, A. A. and Hrma, P., Int. J. Appl. Glass Sci. 9, 487-498 (2018).CrossRefGoogle Scholar
Ahmadzadeh, M., Marcial, J. and McCloy, J., J. Geophys. Res. Solid Earth 122 (4), 2504-2524 (2017).CrossRefGoogle Scholar
Matlack, K. S., Viragh, C., Kot, W. and Pegg, I. L., VSL-13R33430-1 (2015).Google Scholar
Deshkar, A., Marcial, J., Southern, S. A., Kobera, L., Bryce, D. L., McCloy, J. S. and Goel, A., J. Am. Ceram. Soc. 100 (7), 2859-2878 (2017).CrossRefGoogle Scholar
Li, H., Hrma, P. R., Vienna, J. D., Qian, M., Su, Y. and Smith, D. E., J. Non-Cryst. Solids 331 (1-3), 202-216 (2003).CrossRefGoogle Scholar