Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:31:25.849Z Has data issue: false hasContentIssue false

Effect of cation ratios and monoethanolamine on the morphology of solution processed Cu2ZnSnS4 films

Published online by Cambridge University Press:  02 April 2019

Jitendra Kumar
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India
Sarang Ingole*
Affiliation:
Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India
*
Get access

Abstract

Thin films of Cu2ZnSnS4 have been synthesized through solution chemistry. The correlation between film morphology and the ratio of cations (copper, zinc and tin) and the amount of monoethanolamine (MEA) in solution has been investigated. The stoichiometric ratio of cations resulted in films comprised of fine grains (∼165 nm) with large crystals (∼ 1 − 2μm) spread over its surface. The films corresponding to copper poor and zinc rich solutions were comprised of grains having uniform size (∼300 nm). The addition of MEA to precursor solutions resulted in a significant drop of pinholes in the films, however, at the same time grain size decreases to 50 − 200 nm range depending on the amount of MEA present in the precursor solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shin, S. W., Pawar, S. M., Park, C. Y., Yun, J. H., Moon, J. H., Kim, J. H., Lee, J. Y., Sol. Energy Mater. Sol. Cells 95, 3202, (2011).CrossRefGoogle Scholar
Liu, F., Li, Y., Zhang, K., Wang, B., Yan, C., Lai, Y., Zhang, Z., Li, J., Liu, Y., Sol. Energy Mater. Sol. Cells 94, 2431, (2010).CrossRefGoogle Scholar
Wang, Y., Ma, J., Liu, P., Chen, Y., Li, R., Gu, J., Lu, J., Yang, S., Gao, X., Mater. Lett. 77, 13, (2012).CrossRefGoogle Scholar
Saha, S. K., Guchhait, A., Pal, A. J., Phys. Chem. Chem. Phys. 2, 8090, (2012).CrossRefGoogle Scholar
Su, Z., Sun, K., Han, Z., Cui, H., Liu, F., Lai, Y., J. Mater. Chem. A 2, 500, (2014).CrossRefGoogle Scholar
Swami, S. K., Kumar, A., Dutta, V., Energy Procedia 33, 198, (2013).CrossRefGoogle Scholar
Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H., Sol. Energy Mater. Sol. Cells 93, 583, (2009).CrossRefGoogle Scholar
Tanaka, K., Moritake, N., Uchiki, H., Sol. Energy Mater. Sol. Cells 91, 1199, (2007).CrossRefGoogle Scholar
Shih, C. W., Wang, Y. Y., Wan, C. C., J. Appl. Electrochem. 33, 403, (2003).CrossRefGoogle Scholar
Dimitrievska, M., Fairbrother, A., Fontané, X., Jawhari, T., Izquierdo-Roca, V., Saucedo, E., Pérez-Rodríguez, A., Appl. Phys. Lett. 104, 1, (2014).CrossRefGoogle Scholar
Sarswat, P. K., Free, M. L., Tiwari, A., Phys. Status Solidi Basic Res. 248, 2170, (2011).Google Scholar
Mainz, R., Walker, B. C., Schmidt, S. S., Zander, O., Weber, A., Rodriguez-Alvarez, H., Just, J., Klaus, M., Agrawal, R., Unold, T., Phys. Chem. Chem. Phys. 15, 18281, (2013).CrossRefGoogle Scholar
Fairbrother, A., Izquierdo-Roca, V., Fontané, X., Ibáñez, M., Cabot, A., Saucedo, E., Pérez-Rodríguez, A., CrystEngComm 16, 4120, (2014).CrossRefGoogle Scholar
Fairbrother, A., García-Hemme, E., Izquierdo-Roca, V., Fontané, X., Pulgarín-Agudelo, F. A., Vigil-Galán, O., Pérez-Rodríguez, A., Saucedo, E., J. Am. Chem. Soc. 134, 8018, (2012).CrossRefGoogle Scholar
Weber, A., Mainz, R., Schock, H. W., J. Appl. Phys.107, 013516, (2010).CrossRefGoogle Scholar
Sun, Y., Zhang, Y., Wang, H., Xie, M., Zong, K., Zheng, H., Shu, Y., Liu, J., Yan, H., Zhu, M., Lau, W., J. Mater. Chem. A 1, 6880, (2013).CrossRefGoogle Scholar
Ilari, G. M., Fella, C. M., Ziegler, C., Uhl, A. R., Romanyuk, Y. E., Tiwari, A. N., Sol. Energy Mater. Sol. Cells 104, 125, (2012).CrossRefGoogle Scholar
Tiong, V. T., Zhang, Y., Bell, J., Wang, H., Rsc Adv . 5 , 20178, (2015).CrossRefGoogle Scholar