Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T15:46:52.719Z Has data issue: false hasContentIssue false

The effect of an improved density functional on the thermodynamics and adsorption-controlled growth windows of chalcogenide perovskites

Published online by Cambridge University Press:  26 June 2018

Stephen A. Filippone
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Yi-Yang Sun
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
R. Jaramillo*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
*
Get access

Abstract

Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Density functional theory can be used in combination with computational thermodynamics to predict the pressure-temperature phase diagrams for chalcogenide perovskites. We report results using the Strongly Constrained and Appropriately Normed (SCAN) and the rVV10 density functionals, and compare to previously-published results using the PBEsol functional. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These phase diagrams can guide adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy (MBE).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, J.W., Grinberg, I., and Rappe, A.M., Phys. Rev. B 79, 235115 (2009).CrossRefGoogle Scholar
Brehm, J.A., Bennett, J.W., Schoenberg, M.R., Grinberg, I., and Rappe, A.M., J. Chem. Phys. 140, 224703 (2014).CrossRefGoogle Scholar
Sun, Y.-Y., Agiorgousis, M.L., Zhang, P., and Zhang, S., Nano Lett. 15, 581 (2015).CrossRefGoogle Scholar
Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Deng, C., Gross, N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y.-Y., Zhang, S., and Zeng, H., Nano Energy 22, 129 (2016).CrossRefGoogle Scholar
Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., and Yan, Y., Chem. Mater. 28, 821 (2016).CrossRefGoogle Scholar
Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R., and Ravichandran, J., Adv. Mater. 29, 1604733 (2017).CrossRefGoogle Scholar
Ju, M.-G., Dai, J., Ma, L., and Zeng, X.C., Adv. Energy Mater. 7, 1700216 (2017).CrossRefGoogle Scholar
Filippone, S.A., Sun, Y.-Y., and Jaramillo, R., MRS Commun. 1 (2018).Google Scholar
Sun, J., Ruzsinszky, A., and Perdew, J.P., Phys. Rev. Lett. 115, 036402 (2015).CrossRefGoogle Scholar
Sun, J., Remsing, R.C., Zhang, Y., Sun, Z., Ruzsinszky, A., Peng, H., Yang, Z., Paul, A., Waghmare, U., Wu, X., Klein, M.L., and Perdew, J.P., Nat. Chem. 8, 831 (2016).CrossRefGoogle Scholar
Peng, H., Yang, Z.-H., Perdew, J.P., and Sun, J., Phys. Rev. X 6, 041005 (2016).Google Scholar
Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.-H., Kang, Y.-B., Melançon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., Spencer, P., and Van Ende, M.-A., Calphad 54, 35 (2016).CrossRefGoogle Scholar
Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy, 1 edition (Academic Press, Boston, 1992).Google Scholar
Henini, M., editor, Molecular Beam Epitaxy: From Research to Mass Production, 1st ed. (Elsevier, 2012).Google Scholar