Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:46:32.851Z Has data issue: false hasContentIssue false

EELS Analysis of Oxygen Scavenging Effect in a Resistive Switching Structure of Pt/Ta/SrTiO3/Pt

Published online by Cambridge University Press:  10 January 2018

Atsushi Tsurumaki-Fukuchi*
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido060-0814, Japan
Ryosuke Nakagawa
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido060-0814, Japan
Masashi Arita
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido060-0814, Japan
Yasuo Takahashi
Affiliation:
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido060-0814, Japan
Get access

Abstract

A complex mechanism of interfacial oxygen scavenging is revealed by electron energy-loss spectroscopy (EELS) for a resistive switching oxide of SrTiO3 with a scavenging layer of Ta. When Ta thin layer is inserted at one of the interfaces of Pt/SrTiO3/Pt structure, a large reduction of electrical resistance is induced for the structure, and oxygen defects are introduced at the interfacial part of SrTiO3. In the resistance decrease by voltage applications, simultaneous occurrence of oxidation and reduction of Ta scavenging layer is shown by EELS analyses from the low-loss spectra. The EELS and scanning transmission electron microscopy observations demonstrate that oxygen scavenging by Ta layer is an interfacial phenomenon where the redox reactions occur at the whole part of the interface. In addition, Pt electrode of the structure, which is chemically inert for oxidation, is revealed to have significant effects in the scavenging processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article has been updated since original publication. For details see doi: 10.1557/adv.2018.129.

References

REFERENCES

Picone, A., Riva, M., Brambilla, A., Calloni, A., Bussetti, G., Finazzi, M., Ciccacci, F. and Duò, L., Surf. Sci. Rep. 71, 3276 (2016).Google Scholar
Sawa, A., Mater. Today 11, 2836 (2008).Google Scholar
Lee, C. B., Kang, B. S., Benayad, A., Lee, M. J., Ahn, S.-E., Kim, K. H., Stefanovich, G., Park, Y. and Yoo, I. K., Appl. Phys. Lett. 93, 042115 (2008).Google Scholar
Lin, K.-L., Hou, T.-H., Shieh, J., Lin, J.-H., Chou, C.-T. and Lee, Y.-J., J. Appl. Phys. 109, 084104 (2011).Google Scholar
Nili, H., Walia, S., Balendhran, S., Strukov, D. B., Bhaskaran, M. and Sriram, S., Adv. Funct. Mater. 24, 67416750 (2014).Google Scholar
Guo, Y. and Robertson, J., Appl. Phys. Lett. 105, 223516 (2014).Google Scholar
Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K. and Strukov, D. B., Nature 521, 6164 (2015).Google Scholar
Zhong, X., Rungger, I., Zapol, P., Nakamura, H., Asai, Y. and Heinonen, O., Phys. Chem. Chem. Phys. 18, 75027510 (2016).Google Scholar
Kim, W., Menzel, S., Wouters, D. J., Guo, Y., Robertson, J., Roesgen, B., Waser, R. and Rana, V., Nanoscale 8, 1777417781 (2016).Google Scholar
Celano, U., Op de Beeck, J., Clima, S., Luebben, M., Koenraad, P. M., Goux, L., Valov, I. and Vandervorst, W., ACS. Appl. Mater. Interfaces 9, 1082010824 (2017).Google Scholar
Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. and Hwang, H. Y., Nature 430, 657661 (2004).Google Scholar
Du, H., Jia, C.-L., Koehl, A., Barthel, J., Dittmann, R., Waser, R. and Mayer, J., Chem. Mater. 29, 31643173 (2017).Google Scholar
Sharma, J. K. N., Chakraborty, B. R. and Bera, S., Surf. Sci. 285, 237242 (1993).Google Scholar
Park, G.-S., Kim, Y. B., Park, S. Y., Li, X. S., Heo, S., Lee, M.-J., Chang, M., Kwon, J. H., Kim, M., Chung, U.-I., Dittmann, R., Waser, R. and Kim, K., Nat. Commun. 4, 2382 (2013).Google Scholar
Jeong, D. S., Schroeder, H., Breuer, U. and Waser, R., J. Appl. Phys. 104, 123716 (2008).Google Scholar
Cooper, D., Baeumer, C., Bernier, N., Marchewka, A., La Torre, C., Dunin-Borkowski, R. E., Menzel, S., Waser, R. and Dittmann, R., Adv. Mater. 29, 1700212 (2017).Google Scholar