Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:56:19.891Z Has data issue: false hasContentIssue false

The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries

Published online by Cambridge University Press:  03 June 2019

Erika Nagai
Affiliation:
Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI48105, USA Toyota Motor Corporation, Higashifuji Technical Center, 1200 Mishuku, Susono, Shizuoka410-1193, Japan
Timothy S. Arthur*
Affiliation:
Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI48105, USA
Patrick Bonnick
Affiliation:
Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI48105, USA
Koji Suto
Affiliation:
Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI48105, USA
John Muldoon
Affiliation:
Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI48105, USA
*
* Corresponding author: Timothy S. Arthur (tim.arthur@toyota.com)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The electrochemical discharge mechanism is reported for all-solid lithium sulfur batteries. Upon milling with carbon fibers, the solid electrolyte used within the cathode composite becomes electrochemically active. Analysis with Raman spectroscopy and XPS revealed the importance of bridging S-S bond formation and breaking in lithium polysulfidophosphates during electrochemical lithiation of the active solid electrolyte. Remarkably, when sulfur is introduced as an active material in the cathode composite, lithium polysulfides are formed as an intermediate product before full lithiation into lithium sulfide. The synthesis of materials based on bridging S-S bonds is an important avenue to the design of new cathodes for all-solid batteries.

Keywords

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2019

References

References:

Armand, M., and Tarascon, J.-M, Nature 451, 652 (2008).CrossRefGoogle Scholar
Armand, M., and Tarascon, J.-M, Nature 414, 359 (2001).Google Scholar
Scrosati, B., Hassoun, J. and Sun, Y.K., Energy Environ. Sci. 4, 3287 (2011).CrossRefGoogle Scholar
Backman, J.C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L. and Shao-Horn, Y., Chem. Rev. 116, 140 (2016).CrossRefGoogle Scholar
Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K. and Mitsui, A., Nat. Mater. 10, 682 (2011).CrossRefGoogle Scholar
Zhang, Z., Shao, Y., Lotsch, B., Hu, Y.-S., Li, H., Janek, J., Nazar, L.F., Nan, C.-W., Maier, J., Armand, M., and Chen, L., Energy Environ. Sci. 11, 1945 (2018).CrossRefGoogle Scholar
Mizuno, F., Hayashi, A., Tadanaga, K. and Tatsumisago, M., Adv. Mater. 17, 918 (2005).CrossRefGoogle Scholar
Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H. and Kanno, R., Nat. Energy. 1, 16030 (2016).CrossRefGoogle Scholar
Seino, Y., Ota, T., Takada, K., Hayashi, A. and Tatsumisago, M., Energy Environ. Sci. 7, 627 (2014).CrossRefGoogle Scholar
Garcia-Mendez, R., Mizuno, F., Zhang, R., Arthur, T.S and Sakamoto, J., Electrochim. Acta 237, 144 (2017).CrossRefGoogle Scholar
Wenzel, S., Weber, D.A., Leichtweiss, T., Busche, M.R., Sann, J., and Janek, J., Solid State Ionics 286, 24 (2016).CrossRefGoogle Scholar
Richards, W., Miara, L.J., Wang, Y., Kim, J.C. and Ceder, G., Chem. Mater. 28, 266 (2016).CrossRefGoogle Scholar
Ohta, N., Takada, K., Zhang, L., Ma, R., Osada, M, and Sasaki, T., Adv. Mater. 18, 2226 (2006).CrossRefGoogle Scholar
Manthiram, A., Chung, S.-H. and Zu, C., Adv. Mater. 27, 1980 (2015).CrossRefGoogle Scholar
Pang, Q., Liang, X., Kwok, C.Y. and Nazar, L.F., Nat. Energy 1, 16132 (2016).CrossRefGoogle Scholar
Bonnick, P., Nagai, E. and Muldoon, J., J. Electrochem. Soc. 165, A6005 (2016).CrossRefGoogle Scholar
Zhang, S., Ueno, K., Dokko, K., and Watanabe, K., Adv. Energy Mater. 5, 15001177 (2015).Google Scholar
Nagao, M., Hayashi, A., Tatsumisago, M., Ichinose, T., Ozaki, T., Togawa, Y., and Mori, S. J. Power Sources. 274, 471 (2015).CrossRefGoogle Scholar
Hakari, T., Hayashi, A. and Tatsumisago, M., Adv. Sustainable Syst., 1, 1700017 (2017).CrossRefGoogle Scholar
Judez, X., Zhang, H., Li, C., Eshetu, G.G., Zhang, Y., González-Marcos, J.A., Armand, M., and Rodriguez-Martinez, L.M., J. Phys. Chem. Lett. 8, 3473 (2017).CrossRefGoogle Scholar
Nagata, H. and Chikusa, Y., Y.J. Power Sources. 329, 268 (2016).CrossRefGoogle Scholar
Hakari, T., Deguchi, M., Mitsuhara, K., Ohta, T., Saito, K., Orisaka, Y., Uchimoto, Y., Kowada, Y., Hayashi, A. and Tatsumisago, M., Chem. Mater. 29, 4768 (2017).CrossRefGoogle Scholar
Hagen, M., Schiffels, P., Hammer, M., Dörfler, S., Tübke, J., Hoffmann, M.J., Althues, H., and Kaskel, S., J. Electrochem. Soc. 160, A1205 (2013).CrossRefGoogle Scholar
Lin, Z., Liu, Z., Fu, W., Dudney, N.J., and Liang, C., Angew. Chem. Int. Ed. 52, 7460 (2013).CrossRefGoogle Scholar
Smart, R.S.C., Skinner, W.M. and Gerson, A.R., Surf. Interface Anal. 28, 101 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
Fantauzzi, M., Elsener, B., Atzei, D., Rigoldi, A. and Rossi, A., RSC Adv . 5, 75953 (2015).CrossRefGoogle Scholar
Muramatsu, H., Hayashi, A., Ohtomo, T., Hama, S. and Tatsumisago, M., Solid State Ionics 182, 116 (2011).CrossRefGoogle Scholar
Sahu, G., Lin, Z., Li, J., Liu, Z., Dudney, N.J. and Liang, C., Energy Environ. Sci. 7, 1053 (2014).CrossRefGoogle Scholar