Published online by Cambridge University Press: 17 March 2020
Pneumonia has contributed greatly to child mortality, especially among children under the ages of five in sub-Saharan Africa, killing more children than the number of children dying from HIV/AIDS. The current methods of diagnosing pneumonia involved physical examination and chest x-ray which are limited by low accuracy, high error margins, higher cost, and stands the risks of inducing cancer. In this work, a low-cost, non-invasive biomedical device was designed and developed to improve accuracy in diagnosing pneumonia. The device functions to detect fluid in a lung consolidated by pneumonia. Dry grouting sponge was used as a phantom for a healthy lung, while a wet sponge was used to mimic a pneumonia-consolidated lung. Surface exciter was used to produce sound waves which travelled through one side of the phantom and are detected on the other end using an electronic stethoscope. The signals detected were digitally analyzed using MATLAB and AUDACITY software. The differences in resonant frequencies from the power spectrum analysis of sound waves as they travelled through the sponges were used to distinguish between a pneumonia-consolidated lung and a healthy lung.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.