Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:14:05.485Z Has data issue: false hasContentIssue false

Development of a facile one-pot synthesis method for an ingestible pH sensitive actuator

Published online by Cambridge University Press:  07 October 2019

Alex Keller
Affiliation:
School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
Holly Warren
Affiliation:
ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
Marc in het Panhuis*
Affiliation:
School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia. ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
*
Get access

Abstract

Edible devices are an emergent technology and in this paper the simplicity and efficacy that poly(acrylic acid)/calcium hydroxide possess in creating a pH sensitive ingestible actuator which responds to acidic environments such as gastric fluid is demonstrated. It was found that poly(acrylic acid)/calcium hydroxide hydrogels exhibit reversible actuation upon submerging in 0.1 M sodium citrate for 2 hours. Our results show that these hydrogels can restore their compressive stress to 0.19 ± 0.06 MPa, swelling ratio to 26 ± 2 and volume to 56% ± 3% of its original volume. This work offers new possibilities for developments in a variety of fields such as drug delivery, 4D printed materials, soft robotics and edible devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Hungin, A. P. S., Chang, L., Locke, G. R., Dennis, E. H. & Barghout, V.Irritable bowel syndrome in the United States: prevalence, symptom patterns and impact. Aliment. Pharmacol. Ther. 21, 13651375 (2005).CrossRefGoogle ScholarPubMed
Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 28932917 (2010).CrossRefGoogle ScholarPubMed
McCaffrey, C., Chevalerias, O., O’Mathuna, C. & Twomey, K.Swallowable-Capsule Technology. Pervasive Computing, IEEE 7, 2329 (2008).Google Scholar
Bettinger, C. J.Materials Advances for Next-Generation Ingestible Electronic Medical Devices. Trends Biotechnol. 33, 575585 (2016).CrossRefGoogle Scholar
Friedt, M. & Welsch, S.An update on pediatric endoscopy. Eur. J. Med. Res. 18, 2431 (2013).CrossRefGoogle ScholarPubMed
Ahmed, E. M.Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105121 (2015).CrossRefGoogle ScholarPubMed
Kirchmajer, D. M., Gorkin III, R. & in het Panhuis, M.An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chem. B 3, 41054117 (2015).CrossRefGoogle ScholarPubMed
Pawar, S. N. & Edgar, K. J.Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33, 32793305 (2012).CrossRefGoogle ScholarPubMed
Darnell, M. C. et al. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34, 80428048 (2013).CrossRefGoogle ScholarPubMed
Bakarich, S. E., in het Panhuis, M., Beirne, S., Wallace, G. G. & Spinks, G. M.Extrusion printing of ionic-covalent entanglement hydrogels with high toughness. J. Mater. Chem. B 1, 49394946 (2013).CrossRefGoogle ScholarPubMed
Lozano, R. et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67, 264273 (2015).CrossRefGoogle ScholarPubMed
Keller, A. & Panhuis, M. in het. Printed organic electronic device components from edible materials. MRS Online Proc. Libr. 1717, 711 (2015).CrossRefGoogle Scholar
Guiseppi-Elie, A.Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials 31, 27012716 (2010).CrossRefGoogle ScholarPubMed
Keller, A., Pham, J., Warren, H. & in het Panhuis, M.Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 53185328 (2017).CrossRefGoogle ScholarPubMed
Bakarich, S. E., Gorkin, R., Panhuis, M. in het & Spinks, G. M.4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromol. Rapid Commun. 36, 12111217 (2015).CrossRefGoogle ScholarPubMed
Hong, W. & Wang, X.Actuation and ion transportation of polyelectrolyte gels. in Behavior and Mechanics of Multifunctional Materials and Composites 2010 7644, 112 (2010).CrossRefGoogle Scholar
Xia, Y. & Zhu, H.Polyaniline nanofiber-reinforced conducting hydrogel with unique pH-sensitivity. Soft Matter 7, 93889393 (2011).CrossRefGoogle Scholar
Dai, T., Qing, X., Lu, Y. & Xia, Y.Conducting hydrogels with enhanced mechanical strength. Polymer (Guildf). 50, 52365241 (2009).CrossRefGoogle Scholar
Das, D., Ghosh, P., Dhara, S., Panda, A. B. & Pal, S.Dextrin and Poly(acrylic acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin. ACS Appl. Mater. Interfaces 7, 47914803 (2015).CrossRefGoogle ScholarPubMed
Tavakoli, J., Mirzaei, S. & Tang, Y.Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications. Polymers (Basel). 10, 305 (2018).CrossRefGoogle ScholarPubMed
Ito, T. et al. Bioadhesive and biodissolvable hydrogels consisting of water-swellable poly(acrylic acid)/poly(vinylpyrrolidone) complexes. J. Biomed. Mater. Res. Part B Appl. Biomater. 0, (2019).Google Scholar
Palleau, E., Morales, D., Dickey, M. D. & Velev, O. D.Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 4, 2257 (2013).CrossRefGoogle ScholarPubMed
Shehnaz, H., Haider, A., Saeed Arayne, M. & Sultana, N.Carboxyterfenadine antacid interaction monitoring by UV spectrophotometry and RP-HPLC techniques. Arab. J. Chem. 7, 839845 (2014).CrossRefGoogle Scholar
Daly, J. S. & Cooney, D. O.Omission of Pepsin from Simulated Gastric Fluid in Evaluating Activated Charcoals as Antidotes. J. Pharm. Sci. 67, 11811183 (1978).CrossRefGoogle ScholarPubMed
Kong, F. & Singh, R. P.A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. J. Food Sci. 75, 627635 (2010).CrossRefGoogle ScholarPubMed
Marciani, L. et al. Assessment of antral grinding of a model solid meal with echo-planar imaging. Am. J. Physiol. - Gastrointest. Liver Physiol. 280, 844849 (2001).CrossRefGoogle Scholar
Kamba, M., Seta, Y., Kusai, A., Ikeda, M. & Nishimura, K.A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int. J. Pharm. 208, 6170 (2000).CrossRefGoogle ScholarPubMed