Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T22:05:04.619Z Has data issue: false hasContentIssue false

Design of Heating Coils Based on Space-Filling Fractal Curves for Highly Uniform Temperature Distribution

Published online by Cambridge University Press:  20 January 2020

Karnati Kumar Sai Charan
Affiliation:
Centre for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology, Hyderabad, Telangana-500032, India
Seshadri Reddy Nagireddy
Affiliation:
Centre for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology, Hyderabad, Telangana-500032, India
Sumana Bhattacharjee
Affiliation:
Centre for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology, Hyderabad, Telangana-500032, India
Aftab M Hussain*
Affiliation:
Centre for VLSI and Embedded System Technologies (CVEST), International Institute of Information Technology, Hyderabad, Telangana-500032, India
*
*Corresponding author. E-mail: aftab.hussain@iiit.ac.in
Get access

Abstract

Heating coils utilize the concept of resistive heating to convert electrical energy into thermal energy. Uniform heating of the target area is the key performance indicator for heating coil design. Highly uniform distribution of temperature can be achieved by using a dense metal distribution in the area under consideration, however, this increases the cost of production significantly. A low-cost and efficient heating coil should have excellent temperature uniformity while having minimum metal consumption. In this work, space-filling fractal curves, such as Peano curve, Hilbert curve and Moore curve of various orders, have been studied as geometries for heating coils. In order to compare them in an effective way, the area of the geometries has been held constant at 30 mm × 30 mm and a constant power of 2 W has been maintained across all the geometries. Further, the thickness of the metal coils and their widths have been kept constant for all geometries. Finite Element Analysis (FEA) results show Hilbert and Moore curves of order-4, and Peano curve of order-3 outperform the typical double-spiral heater in terms of temperature uniformity and metal coil length.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curković, B., Vitulić, V., Babić-Naglić, D., and Dürrigl, T., Zeitschrift fur Rheumatologie 52 ,289 (1993).Google Scholar
Sluka, K. A., Christy, M. R., Peterson, W. L., Rudd, S. L., and Troy, S. M., Arch. Phys. Med. Rehabil. 80 ,313 (1999).CrossRefGoogle Scholar
Hayes, K. W., Arthritis Rheum. 6 ,156 (1993).CrossRefGoogle Scholar
Hussain, A. M., Lizardo, E. B., Torres Sevilla, G. A., Nassar, J. M., and Hussain, M. M., Adv. Healthcare Mater. 4 ,665 (2015).10.1002/adhm.201400647CrossRefGoogle Scholar
Lehmann, J. F., Therapeutic Heat and Cold, (Williams & Wilkins 1990) pp. 153-154.Google Scholar
Lehmann, J. F., Brunner, G. D., and Stow, R. W., Arch. Phys. Med. Rehabil. 39 ,560 (1958).Google Scholar
Lehmann, J. F., Masock, A., Warren, C., and Koblanski, J., Arch. Phys. Med. Rehabil. 51 ,481 (1970).Google Scholar
Gersten, J. W., Am. J. Phys. Med. 34 ,362 (1955).Google Scholar
Mo, Y., Okawa, Y., Inoue, K., and Natukawa, K., Sens. Actuators, A 100 ,94 (2002).10.1016/S0924-4247(02)00145-0CrossRefGoogle Scholar
Sharma, R. and Khanna, P., Fuel 112 ,550 (2013).10.1016/j.fuel.2012.02.070CrossRefGoogle Scholar
Wan, Q.et al., Appl. Phys. Lett. 84 ,3654 (2004).10.1063/1.1738932CrossRefGoogle Scholar
Kim, T., Int. J. Hydrogen Energy, 36, 1404 (2011).CrossRefGoogle Scholar
Pagonis, D. N., Kaltsas, G., and Nassiopoulou, A. G., J. Micromech. Microeng. 14 ,793 (2004).CrossRefGoogle Scholar
Balakrishnan, V., Phan, H.-P., Dinh, T., Dao, D. V., and Nguyen, N.-T., Sensors 17 ,2061 (2017).CrossRefGoogle ScholarPubMed
Neda, T., Nakamura, K., and Takumi, T., Sens. Actuators, A 54 ,626 (1996).10.1016/S0924-4247(97)80027-1CrossRefGoogle Scholar
Dai, C.-L., Liu, M.-C., Chen, F.-S., Wu, C.-C., and Chang, M.-W., Sens. Actuators, B 123 ,896 (2007).CrossRefGoogle Scholar
Weber, M., Lerch, P., and Renaud, P., J. Micromech. Microeng. 7 ,210 (1997).10.1088/0960-1317/7/3/034CrossRefGoogle Scholar
Liu, G.et al., Microelectron. Eng. 129 ,46 (2014).CrossRefGoogle Scholar
Pimentel-Domínguez, R., Moreno-Álvarez, P., Hautefeuille, M., Chavarría, A., and Hernández-Cordero, J., Biomed. Opt. Express 7 ,1138 (2016).CrossRefGoogle Scholar
Visvanathan, K. and Gianchandani, Y. B., in TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, (Denver, CO, USA, 2009), pp. 2421-2424.CrossRefGoogle Scholar
Zhou, Q., Sussman, A., Chang, J., Dong, J., Zettl, A., and Mickelson, W., Sens. Actuators, A 223 ,67 (2015).CrossRefGoogle Scholar
Chang, W.-Y. and Hsihe, Y.-S., Microelectron. Eng. 149 ,25 (2016).CrossRefGoogle Scholar
Mele, L.et al., Procedia Eng. 25 ,387 (2011).CrossRefGoogle Scholar
Guan, T. and Puers, R., Procedia Eng. 5 ,1356 (2010).CrossRefGoogle Scholar
Prasad, M., Microelectron. Reliab. 55 ,937 (2015).CrossRefGoogle Scholar
Fan, J. A.et al., Nat. Commun. 5 ,3266 (2014).CrossRefGoogle Scholar