Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:38:45.810Z Has data issue: false hasContentIssue false

Density-Functional Tight-Binding for Platinum Clusters and Bulk: Electronic vs Repulsive Parameters

Published online by Cambridge University Press:  20 June 2019

Ka Hung Lee
Affiliation:
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN37996, U.S.A. Computational Sciences and Engineering Division and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37831, U.S.A.
Van Quan Vuong
Affiliation:
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN37996, U.S.A. Computational Sciences and Engineering Division and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN37831, U.S.A.
Victor Fung
Affiliation:
Department of Chemistry, University of California, Riverside, CA92521, U.S.A.
De-en Jiang
Affiliation:
Department of Chemistry, University of California, Riverside, CA92521, U.S.A.
Stephan Irle*
Affiliation:
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN37996, U.S.A.
Get access

Abstract

We present a general purpose Pt-Pt density-functional tight-binding (DFTB) parameter for Pt clusters as well as bulk, using a genetic algorithm (GA) to automatize the parameterization effort. First we quantify the improvement possible by only optimizing the repulsive potential alone, and second we investigate the effect of improving the electronic parameter as well. During both parameterization efforts we employed our own training set and test sets, with one set containing ∼20,000 spin-polarized DFT structures. We analyze the performance of our two DFTB Pt-Pt parameter sets against density functional theory (DFT) as well as an earlier DFTB Pt-Pt parameters. Our study sheds light on the role of both repulsive and electronic parameters with regards to DFTB performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract no. DE-AC05-00OR22725 with the U. S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

REFERENCES:

Chin, Y. H., Buda, C., Neurock, M., and Iglesia, E., J. Catal. 283 (1), 1024 (2011).CrossRefGoogle Scholar
Korchak, V. N., Grishin, M. V., Bykhovskii, M. Y., Gatin, A. K., Slutskii, V. G., Kharitonov, V. A., Tsyganov, S. A., and Shub, B. R., Russ. J. Phys. Chem. B 11 (6), 932936 (2017).CrossRefGoogle Scholar
Kurzman, J. A., Misch, L. M., and Seshadri, R., Dalt. Trans. 42 (41), 1465314667 (2013).CrossRefGoogle Scholar
Galván, A., Calleja, J., Fañanás, F. J., and Rodríguez, F., Angew. Chemie - Int. Ed. 52 (23), 60386042 (2013).CrossRefGoogle Scholar
Polozhentsev, O. E., Kochkina, V. K., Mazalova, V. L., and Soldatov, A. V., J. Struct. Chem. 57 (7), 14771484 (2016).CrossRefGoogle Scholar
Hamad, B., El-Bayyari, Z., and Marashdeh, A., Chem. Phys. 443, 2632 (2014).CrossRefGoogle Scholar
Xenides, D. and Maroulis, G., J. Comput. Methods Sci. Eng. 5, 19 (2005).Google Scholar
Liu, L. and Corma, A., Chem. Rev. 118 (10), 49815079 (2018).CrossRefGoogle Scholar
Heiles, S. and Johnston, R. L., Int. J. Quantum Chem. 113 (18), 20912109 (2013).CrossRefGoogle Scholar
Mauro, M., Aliprandi, A., Septiadi, D., Kehr, N. S., and De Cola, L., Chem. Soc. Rev. 43 (12), 41444166 (2014).CrossRefGoogle Scholar
Banerjee, T., Dubey, P., and Mukhopadhyay, R., Biochimie 94 (2), 494502 (2012).CrossRefGoogle Scholar
Mendelev, M. I., Han, S., Srolovitz, D. J., Ackland, G. J., Sun, D. Y., and Asta, M., Philos. Mag. 83 (35), 39773994 (2003).CrossRefGoogle Scholar
Cuny, J., Tarrat, N., Spiegelman, F., Huguenot, A., and Rapacioli, M., J. Phys. Condens. Matter 30 (30), 303001 (2018).CrossRefGoogle Scholar
Kullgren, J., Wolf, M. J., Hermansson, K., Köhler, C., Aradi, B., Frauenheim, T., and Broqvist, P., J. Phys. Chem. C 121 (8), 45934607 (2017).CrossRefGoogle Scholar
Dolgonos, G., Aradi, B., Moreira, N. H., and Frauenheim, T., J. Chem. Theory Comput. 6 (1), 266278 (2010).CrossRefGoogle Scholar
Zheng, G., Witek, H. A., Bobadova-Parvanova, P., Irle, S., Musaev, D. G., Prabhakar, R., Morokuma, K., Lundberg, M., Elstner, M., Köhler, C., and Frauenheim, T., J. Chem. Theory Comput. 3 (4), 13491367 (2007).CrossRefGoogle Scholar
Shi, H., Koskinen, P., and Ramasubramaniam, A., J. Phys. Chem. A 121 (12), 24972502 (2017).CrossRefGoogle Scholar
Van den Bossche, M., J. Phys. Chem. A 123 (13), 30383045 (2019).CrossRefGoogle Scholar
Elstner, M., Theor. Chem. Acc. 116, 316325 (2006).CrossRefGoogle Scholar
Gaus, M., Cui, Q., and Elstner, M., Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (1), 4961 (2014).CrossRefGoogle Scholar
Gaus, M., Cui, Q., and Elstner, M., J. Chem. Theory Comput. 7 (4), 931948 (2011).CrossRefGoogle Scholar
Koskinen, P. and Mäkinen, V., Comput. Mater. Sci. 47 (1), 237253 (2009).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50 (24), 1795317979 (1994).CrossRefGoogle Scholar
Vuong, V. Q., Akkarapattiakal Kuriappan, J., Kubillus, M., Kranz, J. J., Mast, T., Niehaus, T. A., Irle, S., and Elstner, M., J. Chem. Theory Comput. 14 (1), 115125 (2018).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59 (3), 17581775 (1999).CrossRefGoogle Scholar
Aradi, B., Hourahine, B., and Frauenheim, T., J. Phys. Chem. A 111 (26), 56785684 (2007).CrossRefGoogle Scholar
Gaus, M., Chou, C. P., Witek, H., and Elstner, M., J. Phys. Chem. A 113 (43), 1186611881 (2009).CrossRefGoogle Scholar
Schönecker, S., Li, X., Richter, M., and Vitos, L., Phys. Rev. B 97 (22), 224305 (2018).CrossRefGoogle Scholar
Janthon, P., Luo, S., Kozlov, S. M., Viñes, F., Limtrakul, J., Truhlar, D. G., and Illas, F., J. Chem. Theory Comput. 10 (9), 38323839 (2014).CrossRefGoogle Scholar
Lejaeghere, K., Van Speybroeck, V., Van Oost, G., and Cottenier, S., Crit. Rev. Solid State Mater. Sci. 39 (1), 124 (2014).CrossRefGoogle Scholar
Fung, V. and Jiang, D.-E., J. Phys. Chem. C 121 (20), 1079610802 (2017).CrossRefGoogle Scholar
Supplementary material: PDF

Lee et al. supplementary material

Lee et al. supplementary material 1

Download Lee et al. supplementary material(PDF)
PDF 1.3 MB