Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T18:59:58.320Z Has data issue: false hasContentIssue false

Controlling Band Alignment at the Back Interface of Cadmium Telluride Solar Cells using ZnTe and Te Buffer Layers

Published online by Cambridge University Press:  15 January 2019

Fadhil K. Alfadhili*
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Adam B. Phillips
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Geethika K. Liyanage
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Jacob M. Gibbs
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Manoj K. Jamarkattel
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Michael J. Heben
Affiliation:
Wright Centre for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606, USA
Get access

Abstract

Formation of a low barrier back contact plays a critical role in improving the photoconversion efficiency of the CdTe solar cells. Incorporating a buffer layer to minimize the band bending at the back of the CdTe device can significantly lower the barrier for the hole current, improving open circuit voltage (VOC) and the fill factor. Over the past years, researchers have incorporated the both ZnTe and Te as buffer layers to improve CdTe device performance. Here we compare device performance using these two materials as buffer layers at the back of CdTe devices. We show that using Te in contact to CdTe results in higher performance than using ZnTe in contact to the CdTe. Low temperature current density-voltage measurements show that Te results is a lower barrier with CdTe than ZnTe, indicating that Te has better band alignment, resulting in less downward bending in the CdTe at the back interface, than ZnTe does.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

NERL: Solar Cells Efficiency Cart (2018) Available at: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg; (accessed 9 December 2018).Google Scholar
Munshi, A. H., Kephart, J., Abbas, A., Raguse, J., Beaudry, J. N., Barth, K., Sites, J., Walls, J., and Sampath, W., IEEE J. Photovolt. 8 (1), 310-314 (2018).CrossRefGoogle Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys. 32 (3), 510-519 (1961).CrossRefGoogle Scholar
Song, T., Moore, A., and Sites, J. R., IEEE J. Photovolt. 8 (1), 293-298 (2018).CrossRefGoogle Scholar
Gessert, T. A., Mason, A. R., Sheldon, P., Swartzlander, A. B., Niles, D., and Coutts, T. J., J. Vacu. Sci. Tech. A 14 (3), 806-812 (1996).CrossRefGoogle Scholar
Li, J., Diercks, D. R., Ohno, T. R., Warren, C. W., Lonergan, M. C., Beach, J. D., and Wolden, C. A., Sol. Energy Mater. Sol. Cells 133, 208 (2015).CrossRefGoogle Scholar
Li, J. V., Duenow, J. N., Kuciauskas, D., Kanevce, A., Dhere, R. G., Young, M. R., and Levi, D. H., IEEE J. Photovolt. 3 (3), 1095-1099 (2013).CrossRefGoogle Scholar
Kwon, Y., Seo, J., Kang, Y., Kim, D., and Kim, J., Opt. Express 26 (2), A30-A38 (2018).CrossRefGoogle Scholar
Li, X., Niles, D. W., Hasoon, F. S., Matson, R. J., and Sheldon, P., J. Vacu. Sci. Tech. A 17 (3), 805-809 (1999).CrossRefGoogle Scholar
Bätzner, D. L., Romeo, A., Zogg, H., Wendt, R., and Tiwari, A. N., Thin Solid Films 387 (1), 151-154 (2001).CrossRefGoogle Scholar
Ochoa-Landín, R., Vigil-Galan, O., Vorobiev, Y. V., and Ramírez-Bon, R., Sol. Energy 83 (1), 134-138 (2009).CrossRefGoogle Scholar
Abbas Shah, N., Ali, A., Ali, Z., Maqsood, A., and Aqili, A. K. S., J. Crystal Growth 284 (3), 477-485 (2005).CrossRefGoogle Scholar
Moore, A., Song, T., and Sites, J., MRS Adv . 2 (53), 3195-3201 (2017).CrossRefGoogle Scholar
Watthage, S. C., Phillips, A. B., Liyanage, G. K., Song, Z., Gibbs, J. M., Alfadhili, F. K., Alkhayat, R. B., Ahangharnejhad, R. H., Almutawah, Z. S., Bhandari, K. P., Ellingson, R. J., and Heben, M. J., IEEE J. Photovolt. 8 (4), 1125-1131 (2018).CrossRefGoogle Scholar
Watthage, S. C., Song, Z., Shrestha, N., Phillips, A. B., Liyanage, G. K., Roland, P. J., Ellingson, R. J., and Heben, M. J., MRS Adv . 2 (21-22), 1183-1188 (2017).CrossRefGoogle Scholar
Bohn, R. G., Tabory, C. N., Deak, C., Shao, M., Compaan, A. D., and Reiter, N., 1994 IEEE 1st World Conf. on Photovolt. Energy Conv. (WCPEC) (A Joint Conference of PVSC, PVSEC and PSEC), 1, 354-356 (1994).Google Scholar
Jarkov, A., Bereznev, S., Volobujeva, O., Traksmaa, R., Tverjanovich, A., Öpik, A., and Mellikov, E., Thin Solid Films 535, 198 (2013).CrossRefGoogle Scholar
Niemegeers, A. and Burgelman, M., J. Appl. Phys. 81 (6), 2881-2886 (1997).CrossRefGoogle Scholar
Shalvey, T., Phillips, L., Durose, K., and Major, J., 7th IEEE World Conf. on Photovolt. Energy Conv. (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 0446-0851 (2018).Google Scholar