Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:39:39.820Z Has data issue: false hasContentIssue false

Confinement Effect in Thermoelectric Properties of Two-Dimensional Materials

Published online by Cambridge University Press:  24 February 2020

Nguyen T. Hung*
Affiliation:
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Japan Department of Physics, Graduate School of Science, Tohoku University, Japan
Ahmad R. T. Nugraha
Affiliation:
Research Center for Physics, Indonesian Institute of Sciences, Indonesia
Teng Yang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, China
Riichiro Saito
Affiliation:
Department of Physics, Graduate School of Science, Tohoku University, Japan
Get access

Abstract:

Thermoelectric (TE) materials, or materials that can generate an electrical energy from temperature gradient, are promising for renewable energy technology. One fundamental aspect in the TE research is the demand to maximize the TE power-factor, PF = S2 σ, by having as large Seebeck coefficient (S) and electrical conductivity (σ) as possible. In the early 90s, Hicks and Dresselhaus proposed the PF enhancement by using low-dimensional materials, in which electrons are confined in certain directions and they move freely in the other directions. This quantum effect is known as the confinement length (L) effect, in which L is the thickness or diameter of the two-dimensional (2D) or one-dimensional materials, respectively. However, a key challenge is to understand the critical value of L, at which the PF can be significantly enhanced. Recently, we reevaluated the confinement theory of the low-dimensional materials to solve this issue. We showed that electrons are fully confined only when L is smaller than an intrinsic length Λ, the so-called thermal de Broglie wavelength, which depends on the materials and can be experimentally measured. Monolayer 2D materials naturally satisfy the condition of L < Λ since their confinement length is ∼ 1 nm, while their thermal de Broglie wavelength is ∼ 5-10 nm. Therefore, they could be a good candidate for TE materials. In this review article, we first review the TE materials with low dimensions. Then, we show the basic concept of the confinement effect and the consequence of such an effect. Finally, based on this effect, we turn our attention to the progress achieved recently in the TE properties of the 2D materials such as monolayer InSe, GaN electron gas, and SrTiO3 superlattices.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miraz, M. H., Ali, M., Excell, P. S., and Picking, R., 2015 Internet Technologies and Applications (ITA), 2015, pp. 219-224.Google Scholar
Hiremath, S., Yang, G., and Mankodiya, K., EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth 2014 ), 2014, pp. 304-307.Google Scholar
Haras, M. and Skotnicki, T., Nano Energy 58, 461-476 (2018).CrossRefGoogle Scholar
Suarez, F., Nozariasbmarz, A., Vashaee, D., and Ozturk, M. C., Energy Environ. Sci. 9, 2099-2113 (2016).CrossRefGoogle Scholar
Hyland, M., Hunter, H., Liu, J., Veety, E., and Vashaee, D., Appl. Energy 182, 518-524 (2016).CrossRefGoogle Scholar
Goldsmid, H. J., Introduction to Thermoelectricity, (Springer-Verlag: Berlin/Heidelberg, Germany, 2010).CrossRefGoogle Scholar
DiSalvo, F. J., Sicence 285, 703-706 (1999).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nature Mat . 7, 105-114 (2008).CrossRefGoogle Scholar
Yazawa, K. and Shakouri, A., Environ. Sci. Technol. 45, 7548-7553 (2011).CrossRefGoogle Scholar
Yee, S. K., LeBlanc, S., Goodson, K. E., and Dames, C., Energy Environ. Sci. 6, 2561-2571 (2013).CrossRefGoogle Scholar
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G. J., Science 321, 554-557 (2008).CrossRefGoogle Scholar
Hong, M., Chen, Z. G., Yang, L., Zou, Y. C., Dargusch, M. S., Wang, H., and Zou, J., Adv. Mater. 30, 1705942 (2018).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631(R) (1993).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
Hung, N. T., Hasdeo, E. H., Nugraha, A. R. T., Dresselhaus, M. S., and Saito, R., Phys. Rev. Lett. 117, 036602 (2016).CrossRefGoogle Scholar
Hung, N. T., Nugraha, A. R. T., and Saito, R., Mater. Today Proc. 4, 12368-12373 (2017).CrossRefGoogle Scholar
Zeng, J., He, X., Liang, S. J., Liu, E., Sun, Y., Pan, C., Wang, Y., Cao, T., Liu, X., Wang, C., et al. , Nano Lett . 18, 7538-7545 (2018).CrossRefGoogle Scholar
Goldsmid, H. J. and Douglas, R. W., Br. J. Appl. Phys. 5, 458 (1945).CrossRefGoogle Scholar
Goldsmid, H. J., J. Electronics 1, 218-222 (1955).Google Scholar
Johnson, V. A. and Horovitz, K. L., Phys. Rev. 92, 226 (1953).CrossRefGoogle Scholar
Kittel, C., Introduction of solid state physics, (John Wiley & Son, 1966).Google Scholar
Vining, C.B., Nat. Mater. 8, 83 (2009).CrossRefGoogle Scholar
Majumdar, A., Science 303, 777 (2004).CrossRefGoogle ScholarPubMed
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., and Snyder, G. J., Nature 473, 66-69 (2011).CrossRefGoogle Scholar
Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., and Kanatzidis, M. G., Nature 489, 414-418 (2012).CrossRefGoogle Scholar
Olvera, A. A., Moroz, N. A., Sahoo, P., Ren, P., Bailey, T. P., Page, A. A., Uher, C., and Poudeu, P. F. P., Energy Environ. Sci. 10, 1668-1676 (2017).CrossRefGoogle Scholar
Zhao, L. D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V. P., and Kanatzidis, M. G., Nature 508, 373-377 (2014).CrossRefGoogle Scholar
Kim, S. I., Lee, K. H., Mun, H. A., Kim, H. S., Hwang, S. W., Roh, J. W., Yang, D. J., Shin, W. H., Li, X. S., Lee, Y. H., et al. , Science 348, 109-114 (2015).CrossRefGoogle Scholar
Hung, N. T., Nugraha, A. R. T., and Saito, R., Energies 12, 4561 (2019).CrossRefGoogle Scholar
Hung, N. T., Nugraha, A. R. T., and Saito, R., Phys. Rev. Appl. 9, 024019 (2018).CrossRefGoogle Scholar
Harman, T.C., Spears, D.L., and Manfra, M.J., J. Electron. Mater. 25, 1121 (1996).CrossRefGoogle Scholar
Sun, X., Cronin, S.B., Liu, J., Wang, K.L., Koga, T., Dresselhaus, M.S., and Chen, G., Proc. Int. Conf. Thermoelectrics (IEEE, New York, 1999), pp. 652655.Google Scholar
Kim, J., Lee, S., Brovman, Y.M., Kim, P., and Lee, W., Nanoscale 7, 5053 (2015).CrossRefGoogle Scholar
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P., Nature 451, 163 (2008).CrossRefGoogle Scholar
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J., Goddard, W.A. III, and Heath, J.R., Nature 451, 168 (2008).CrossRefGoogle Scholar
Giorgini, S., Pitaevskii, L. P., and Stringari, S., Rev. Mod. Phys. 80, 1215 (2008).CrossRefGoogle Scholar
Ohta, H., Kim, S. W., Kaneki, S., Yamamoto, A., and Hashizume, T., Adv. Science 5, 1700696 (2018).CrossRefGoogle Scholar
Zhang, Y., Feng, B., Hayashi, H., Chang, C. P., Sheu, Y. M., Tanaka, I., Ikuhara, Y., and Ohta, H., Nat. Commun. 9, 2224 (2018).CrossRefGoogle Scholar
Zhao, L. D., Lo, S. H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V. P., and Kanatzidis, M. G., Nature 508, 373 (2014).CrossRefGoogle Scholar
Dong, B. J., Wang, Z. H., Hung, N. T., Oganov, A. R., Yang, T., Saito, R., Zhang, Z. D., Phys. Rev. Mater. 3, 013405 (2019).Google Scholar
Hung, N. T., Nugraha, A. R. T., and Saito, R., Appl. Phys. Lett. 111, 092107 (2017).CrossRefGoogle Scholar
Hung, N. T., Nugraha, A. R. T., Yang, T., Zhang, Z., and Saito, R., J. Appl. Phys. 125, 082502 (2019).CrossRefGoogle Scholar
Hung, N. T., Nugraha, A. R. T., and Saito, R., Nano Energy 58, 743-749 (2019).CrossRefGoogle Scholar